1) Suppose you are considering the relationship of:

\(x \), the number of minutes after 12:00 noon today (independent), and

\(y \), the temperature at the MU fountain in Fahrenheit (dependent)

a. Is this relationship a valid function? _____ Why or why not?

b. Using the function named \(T \) and units specified, express the temperature today at the fountain:

b. at 11:50 a.m.__________

c. \(h \) minutes after 12:15 pm__________

d. Use \(T \) to express the change in temperature from 1 pm to 2 pm__________

e. What variable based on \(x \) and/or \(y \) could express this same change in temperature? _______

f. Write an expression for \(y_{\text{NEW}} \), the current temperature, in terms of the temperature some time prior to this, \(y_{\text{OLD}} \). (Don't use function notation, i.e. \(T \).) \(y_{\text{NEW}} = \) ________________

2) Suppose the first command line in a new GC file is the function definition

\[p(b) = \pi b^2 \]

a. Below, write out the keystrokes, in order, that correctly produces the command line at right.

b. Suppose a function \(g \) is properly defined in GC. What other mathematical statement, if entered in GC, will produce each of these?

i) the value of \(g \) when the value of the independent variable is 15/7.

ii) the displayed graph of \(g \) for all non-negative values of the independent variable

iii) a displayed correspondence point determined by \(g \) when the independent variable = 15/7

iv) a vertical segment extending from the point defined in iii), to the point having the opposite dependent value

v) a horizontal segment extending from the \(y \)-axis to the point defined in iii)

c. Explain precisely what you are looking at when viewing a displayed graph, like the one described in 2b ii) above.