ℓ_2 and ℓ_1 Regularization of Ill-conditioned Problems

Rodrigo B. Platte and Toby Sanders

January 30, 2017
Example: diffusion equation

\[u_t = u_{xx}, \quad (t, x) \in (0, \infty) \times (-1, 1) \]

\[u(t, -1) = u(t, 1) = 0, \quad u(0, x) = u_0(x) \]

Forward problem: given \(u_0 \) find \(u(t, x) \) for some \(t > 0 \).

Backward problem: given \(u(T, x) \) find \(u_0 \).
Blurring/deblurring of images

original

blurred
Tikhonov regularization

\[J_\lambda(x) = \| b - Ax \|^2 + \lambda \| x \|^2, \]

or more generally

\[J_{B,\lambda}(x) = \| b - Ax \|^2 + \lambda \| Bx \|^2. \]

\(B \) can be a differential operator and \(\| Bx \| \) an approximation to a Sobolev norm.

Numerically, we minimize

\[J_{B,\lambda}(x) = \| b - Ax \|_2^2 + \lambda \| Bx \|_2^2. \]

by solving the concatenated least-squares problem,

\[J_{B,\lambda}(x) = \left\| \begin{bmatrix} A & 0 \\ \sqrt{\lambda}B \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2. \]
Numerical example: diffusion equation

\[u_t = u_{xx} \] with Neumann BCs.
In discretized form,

\[U_k = M^k U_0. \]

Tikhonov regularization: minimize \(\|M^K u - \tilde{U}_k\|^2 + \lambda^2 \|u\|^2 \)
$u_t = u_{xx}$ with Neumann BCs.
In discretized form,

$$U_k = M^k U_0.$$

Tikhonov regularization: minimize $\|M^k u - \tilde{U}_k\|^2 + \lambda^2 \|Du\|^2$
Numerical example: diffusion equation

\(u_t = u_{xx} \) with Neumann BCs. In discretized form,

\[U_k = M^k U_0. \]

Tikhonov regularization: minimize

\[\| M^k u - \tilde{U}_k \|^2 + \lambda^2 \| D_2 u \|^2 \]
Numerical example: piecewise constant case

\[u_t = u_{xx} \] with Neumann BCs. In discretized form,

\[U_k = M^k U_0. \]

\(\ell_1 \) v.s. \(\ell_2 \) regularization:

\[\| Du \|_2 \] vs. \[\| Du \|_1 (TV) \]
\(\ell_1 \) regularization, sparsity, and compressive sensing

Minimize \(\|x\|_{\ell_1} \) subject to \(Ax = b \)

Minimize \(\|x\|_{\ell_1} \) subject to \(\|Ax - b\|_2 \leq \sigma \)

Minimize \(\|Ax - b\|^2 + \lambda \|x\|_{\ell_1} \)

Minimize \(\|Ax - b\|^2 + \lambda \|Bx\|_{\ell_1} \)

Remark: In statistics, Lasso regression analysis.
Underdetermined systems and compressive sensing

Solve

\[Ax = b, \]

where \(A \) is \(m \times N \) and \(m < N \).
Underdetermined systems and compressive sensing

Solve

\[Ax = b, \]

where \(A \) is \(m \times N \) and \(m < N \).

In CS, the goal is to obtain sparse solutions, i.e., \(x_j \approx 0 \), for several \(j \)'s.
Underdetermined systems and compressive sensing

\[\begin{bmatrix} 1 \\ \vdots \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ x_0 & x_1 & \cdots & x_N \end{bmatrix} \]

Solve

\[Ax = b, \]

where \(A \) is \(m \times N \) and \(m < N \).

In CS, the goal is to obtain sparse solutions, i.e., \(x_j \approx 0 \), for several \(j \)'s.

One option: Minimize \(\| x \|_{\ell_1} \) subject to \(Ax = b \).

\[\| x \|_{\ell_p} = (|x_0|^p + |x_2|^p + \cdots + |x_N|^p)^{1/p} \]

Why \(p = 1 \)?

Remark: the location of nonzero \(x_j \)'s is not known in advance.
Why ℓ_1?

Unit ball:
ℓ_0, $\ell_{1/2}$, ℓ_1, ℓ_2, ℓ_4, ℓ_∞

$\|x\|_{\ell_p} = (|x_0|^p + \cdots + |x_N|^p)^{1/p}$

or, for $0 \leq p < 1$,

$\|x\|_{\ell_p} = (|x_0|^p + \cdots + |x_N|^p)$

- $\|x\|_{\ell_0} = \#$ of nonzero entries in x
 ideal (?) but leads to a NP-complete problem
- ℓ_2 computationally easy but does not lead to sparse solutions.
Sparsity and the ℓ_1-norm (1 equation case)

Example

\[a_1 x_1 + a_2 x_2 = b_1 \]
Sparsity and the ℓ_1-norm (1 equation case)

Example – ℓ_2

$$\min_{x_1, x_2} \sqrt{x_1^2 + x_2^2} \quad \text{subject to} \quad a_1 x_1 + a_2 x_2 = b_1$$
Sparsity and the ℓ_1-norm (1 equation case)

Example – ℓ_1

$$\min_{x_1, x_2} |x_1| + |x_2| \quad \text{subject to} \quad a_1 x_1 + a_2 x_2 = b_1$$
See matlab experiment! (Test-l1-l2.m)
Back to image deblurring – TV reconstruction
Back to image deblurring – HOTV order 2
Back to image deblurring – HOTV order 3
\(\ell_2 \) vs. \(\ell_1 \) in image deblurring (1D slice)

\(\ell_2 \) (black) and \(\ell_1 \) (green) reconstructions