REAL ANALYSIS QUALIFIER EXAMINATION SYLLABUS MAT 570 – MAT 571

Topics:

- Metric space analysis:
 - metric spaces, open sets, closed sets
 - sequences and subsequences, convergence
 - compactness, completeness, connectedness
 - continuity, uniform continuity
 - pointwise convergence, uniform convergence
 - normed vector spaces, bounded linear maps
 - Arzelà-Ascoli theorem
 - Stone-Weierstrass theorem
- Measure and integration:
 - $-\sigma$ -algebras, Borel sets, measures
 - Cantor set, Cantor function, fat Cantor sets
 - Carathéodory's theorem
 - Lebesgue-Stieltjes measures, Lebesgue measure
 - existence of nonmeasurable sets
 - measurable functions
 - elementary properties of integration
 - Monotone and Dominated Convergence theorems, Fatou's lemma,
 - convergence almost everywhere, in measure, in L^p
 - product measures, Tonelli and Fubini theorems
 - real and complex measures
 - Radon-Nikodym and Lebesgue Decomposition theorems
 - bounded variation, absolute continuity
 - Hölder and Minkowski inequalities, L^p spaces and duality

References:

- G. Folland, Real Analysis, chapters 0–3, parts of sections 4.6–4.7, 5.1–5.2, 6.1–6.2
- W. Rudin, Principles of Mathematical Analysis, chapters 1–8

Date: December 3, 2014.