Title: On K-Derived Quartics

Speaker: Benjamin Carrillo

Abstract:

Let K be a number field. A K-derived polynomial $f(x) \in K[x]$ is a polynomial that factors into linear factors over K, as do all of its derivatives. Such a polynomial is said to be proper if its roots are distinct. An unresolved question is whether or not there exists a proper \mathbb{Q}-derived polynomial of degree 4. In the search for a proper \mathbb{Q}-derived quartic emerged quadratic fields K over which there exist proper K-derived quartics. Examples are known of proper K-derived quartics for a quadratic number field K, though other than $\mathbb{Q}(\sqrt{3})$, these fields have quite large discriminant. (The second known field is $\mathbb{Q}(\sqrt{3441})$.) The search finds examples for $K= \mathbb{Q}(\sqrt{D})$ with $D=\ldots,-95,-41,-19,21,31,89, \ldots$.