Fields:

1. Let p be prime, and set $f(x) = x^p - x - c \in \mathbb{F}_p[x], c \neq 0$.

 (a) (10 pts) Determine the splitting field of $f(x)$.

 (b) (10 pts) Show that the Galois group of $f(x)$ is cyclic of order p.

2. (a) (10 pts) Let K_1, K_2 be finite extensions of a field F. Prove that

 \[[K_1K_2 : F] \leq [K_1 : F][K_2 : F]. \]

 (b) (10 pts) Suppose that $[K_1 : F] = m$ and $[K_2 : F] = n$ where $(m, n) = 1$. Prove that $[K_1K_2 : F] = [K_1 : F][K_2 : F] = mn$.

3. Let E/F be a field extension.

 (a) (15 pts) Sketch a proof that if $\alpha, \beta \in E$ are algebraic over F, then $\alpha \pm \beta, \alpha\beta, \alpha/\beta$ ($\beta \neq 0$) are algebraic over F.

 (b) (10 pts) Give an example of algebraic numbers α, β such that

 \[|\mathbb{Q}(\alpha) : \mathbb{Q}| > |\mathbb{Q}(\beta) : \mathbb{Q}| > |\mathbb{Q}(\alpha\beta) : \mathbb{Q}|. \]

4. (30 pts) Let $f(x) \in \mathbb{Z}[x]$ be an irreducible polynomial of degree 4, having roots $a_i, i = 1, \ldots, 4$, in an extension field of \mathbb{Q}. Define (in terms of the a_i) the discriminant D of $f(x)$ and the resolvent cubic $g(x)$ of $f(x)$. Describe how a knowledge of D and of $g(x)$ allows computation of the Galois group of $f(x)$.
5. (a) (10 pts) If \(G \) is a finite Abelian group, then \(G \) is naturally a \(\mathbb{Z} \)-module. Can this action be extended to make \(G \) into a \(\mathbb{Q} \)-module?

(b) (10 pts) Give an explicit example of a map from one \(R \)-module to another which is a group homomorphism but not an \(R \)-module homomorphism.

(c) (10 pts) Exhibit all \(\mathbb{Z} \)-module homomorphisms from \(\mathbb{Z}/21\mathbb{Z} \) to \(\mathbb{Z}/15\mathbb{Z} \).

6. (a) (10 pts) State the Cayley-Hamilton Theorem for an \(n \times n \) matrix \(A \) with real entries, and prove it under the assumption that \(A \) is diagonalizable.

(b) (10 pts) Let \(V \) denote the vector space of all \(n \times n \) matrices with real entries, and consider the linear transformation \(T : V \to V \) defined by \(T(A) = A^t \), where \(A^t \) denotes the transpose of \(A \). Determine the minimum polynomial and characteristic polynomial of \(T \).

7. Let \(N \) be an \(n \times n \) matrix with coefficients in the field \(F \). Suppose \(N \) is nilpotent, that is, \(N^k = 0 \) for some positive integer \(k \).

(a) (10 pts) Prove that \(N \) is similar to a block diagonal matrix whose blocks are matrices with 1’s on the first superdiagonal, and 0’s elsewhere.

(b) (10 pts) Prove that if \(N \) is an \(n \times n \) nilpotent matrix, then \(N^n = 0 \). (You should not quote the Cayley-Hamilton Theorem).

8. (a) (15 pts) Classify up to similarity all \(3 \times 3 \) matrices \(A \) over \(\mathbb{Q} \) satisfying \(A^8 = I \). Give reasons why your classification is complete.

(b) (10 pts) Classify up to similarity all \(3 \times 3 \) matrices \(A \) over \(\mathbb{Z}/2\mathbb{Z} \) satisfying \(A^8 = I \).