GRAPH THEORY QUALIFYING EXAM
SPRING 2017

Directions. Solve the five problems below. Assume that all graphs are simple.

(1) (Thomassen) Prove that every planar graph is 5-choosable.

(2) (König-Egerváry) Show that in a bipartite graph the size of the maximum matching is equal to the size of the minimum vertex cover.

(3) (Euler's Formula) Prove that a connected, plane multigraph with \(n \) vertices, \(m \) edges, and \(f \) faces satisfies \(n - m + f = 2 \).

(4) Let \(G \) be a graph with \(n \) vertices. Let \(u, v \) be distinct non-adjacent vertices of \(G \) with \(d(u) + d(v) \geq n \). Show that \(G \) is Hamiltonian if and only if \(G + uv \) is Hamiltonian.

(5) Prove that every bridgeless cubic graph has a 1-factor.