1. (a) In how many ways may we pass out \(k \) distinct pieces of candy to \(n \) children so that each gets at most one? (Assume \(k \leq n \).)

(b) In how many ways may we pass out \(k \) identical pieces of candy to \(n \) children so that each gets at least one? (Assume \(k \geq n \).)

(c) In how many ways may we pass out \(k \) identical pieces of candy to \(n \) children so that each gets at most one? (Assume \(k \leq n \).)

(d) In how many ways may we pass out \(k \) distinct pieces of candy to \(n \) children so that each gets at least one? (Assume \(k \geq n \).)

2. Given a sequence of \(p \) integers \(a_1, a_2, \ldots, a_p \), show that there exist consecutive terms in the sequence whose sum is divisible by \(p \). That is, show that there are \(i \) and \(j \), with \(1 \leq i \leq j \leq p \), such that \(a_i + a_{i+1} + \cdots + a_j \) is divisible by \(p \).

3. Let \(S(n, k) \) be the Stirling numbers of the 2nd kind.

(a) Show that \(S(n + 1, k + 1) = \sum_{j=k}^{n} S(j, k) \binom{n}{j} \).

(b) Show that \(S(n + 1 + k, k) = \sum_{j=0}^{k} j S(n + j, j) \).

4. (a) Find the number of \(k \)-element subsets of \(\{2, \ldots, 2n\} \) that contain no consecutive integers.

(b) Consider colorings of \(\{1, \ldots, 2n\} \) with red and blue with the property that if \(i \) is red then \(i - 1 \) is red to show:

\[
\sum_{k=0}^{n} (-1)^k \binom{2n-k}{k} 2^{2n-2k} = 2n + 1.
\]

5. Let \(Q \) be the 3-dimensional cube with faces \(F \) and let \(G = G(F) \) be the symmetry group of \(F \) in \(\mathbb{R}^3 \).

(a) Find the cycle index of the group of \(G \).

(b) Find the number of distinct colorings of \(F \) with \(R, B, G \) such that \(R \) is used at most twice.