Directions:
1. There are 8 questions worth a total of 100 points.
2. Read all the questions carefully.
3. You must show all work in order to receive credit for the free response questions!!
4. When possible, box your answer, which must be complete, organized, and exact unless otherwise directed.
5. Always indicate how a calculator was used (i.e. sketch graph, etc. ...).
6. No calculators with QWERTY keyboards or ones like TI-89 or TI-92 that do symbolic algebra may be used.

Honor Statement:
By signing below you confirm that you have neither given nor received any unauthorized assistance on this exam. This includes any use of a graphing calculator beyond those uses specifically authorized by the Mathematics Department and your instructor. Furthermore, you agree not to discuss this exam with anyone until the exam testing period is over. In addition, your calculator’s program memory and menus may be checked at any time and cleared by any testing center proctor or Mathematics Department instructor.

_______________________________________ _________________
Signature Date

PRINT NAME: ___

RECITATION (TUESDAY OR THURSDAY):_______________
1. **[15 pts]** Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x^3} \, dx \, dy$.

2. **[15 pts]** Evaluate $\iiint_V (x^2 + y^2) \, dV$ where V is the volume outside of the cylinder $x^2 + y^2 = 4$, above the plane $z = 0$, and inside the paraboloid $z = 16 - x^2 - y^2$.
3. [15 pts] Find the volume of the solid \textbf{inside} the sphere $x^2 + y^2 + z^2 = 4$, \textbf{outside} the cone $z = \sqrt{x^2 + y^2}$, and \textbf{above} the plane $z = 0$ using a triple integral in spherical coordinates.

4. [15 pts] Find the centroid (center of mass with density=1) of the upper half disk in \mathbb{R}^2 given by the set $\{ x^2 + y^2 \leq 1, y \geq 0 \}$.
5. **[12 pts]** Let V be the volume of the solid bounded by the cylinder $y = x^2$, the plane $z = 0$ and the plane $y + z = 2$ (sketched below). Then

$$V = \int_0^2 \int_0^{2-z} \int_{\sqrt{y}}^{\sqrt{y}} dx \, dy \, dz.$$

Change the order of integration

of this integral to

$$\int \int \int dz \, dy \, dx.$$

Do not evaluate.

6. **[12 pts]** Let R be the square with vertices $(0,0)$, $(-2,1)$ and $(-1,3)$ and $(1,2)$. Use the change of variables $u = x + 2y$, $v = y - 2x$ to rewrite the double integral

$$\iiint_R (x + 2y)(y - 2x) \, dA,$$

as a double integral over a rectangle in the uv-plane. Do not evaluate.
7. [4 pts] Which of the following is a graphical representation of the vector field

\[F = (x + y, x + y) \]?

![Graphical representations](image)

8. [12 pts] State whether the following statements are TRUE or FALSE. If FALSE, correct the statement.

a. Reversing the order of integration on the double integral \(\int_{0}^{2} \int_{x}^{4} f(x, y) \, dy \, dx \) gives the double integral \(\int_{0}^{2} \int_{0}^{x} f(x, y) \, dx \, dy \).
b. Assuming g and f are integrable functions of one variable,

$$
\int_0^1 \int_{-1}^2 f(x)g(y) dx \, dy = \left(\int_{-1}^2 f(x) \, dx \right) \left(\int_0^1 g(y) \, dy \right).
$$

c. In spherical coordinates, the set $\{(\rho, \varphi, \theta) : \theta = \frac{\pi}{4}\}$ is a cone.