Volume of revolution – Slicing

- 1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis: y = 2x, $y = x^2$; *about the x axis*
- 2. Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt[4]{x}$ and y = x about the line y = 1.
- 3. Find the volume of the solid obtained by rotating the region bounded by $y = x^5$ and $x = y^5$ about the line x = -1.
- 4. Find the volume of a right circular cone with height h = 48 and base radius r = 4.
- 5. Find the volume of a pyramid with height h = 27 and rectangular base with dimensions 10 and 20.
- 6. Find the volume of a pyramid with height 5 and base an equilateral triangle with side a = 4.

7. The volume of the frustum of a right circular cone with height h = 9, lower base radius R = 10 and top radius r = 2 is 372π .

8. Find the volume of the frustum of a pyramid with square base of side b = 12, square top of side a = 2, and height h = 3.

Volume of revolution - Shells

1. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis:

 $y = x^2$, y = 0, x = 1, x = 6; about x = 1

2. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.

 $y = \sin x$, y = 0, $x = 2\pi$, $x = 8\pi$; about the y-axis

3. Use the method of cylindrical shells to find the volume of solid obtained by rotating the region bounded by the given curves about the x – axis:

 $y^2 - 3y + x = 0, \quad x = 0$

4. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis:

 $y = x^2$, y = 0, x = 1, x = 4; about x = 1

5. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis: $y = \frac{1}{x}$, y = 0, x = 1, x = 9

Arc length

1. Set up, but do not evaluate, an integral for the length of the curve: $y = e^x \sin x$, $0 \le x \le \pi/2$

2. Find the length of the curve for the interval $a \le v \le b$: $y = \ln\left(\frac{e^v + 1}{e^v - 1}\right)$

3. Find the length of the curve: $y = \frac{1}{6}(x^2 + 4)^{3/2}, \ 0 \le x \le 2$

4. Find the length of the curve:
$$x = \frac{y^4}{8} + \frac{1}{4y^2}, 1 \le y \le 2$$