Volume of revolution - Slicing

1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis: $y=2 x, y=x^{2}$; about the x-axis
2. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt[4]{x}$ and $y=x$ about the line $y=1$.
3. Find the volume of the solid obtained by rotating the region bounded by $y=x^{5}$ and $x=y^{5}$ about the line $x=-1$.
4. Find the volume of a right circular cone with height $h=48$ and base radius $r=4$.
5. Find the volume of a pyramid with height $h=27$ and rectangular base with dimensions 10 and 20.
6. Find the volume of a pyramid with height 5 and base an equilateral triangle with side $a=4$.

7. The volume of the frustum of a right circular cone with height $h=9$, lower base radius $R=10$ and top radius $r=2$ is 372π.

8. Find the volume of the frustum of a pyramid with square base of side $b=12$, square top of side $a=2$, and height $h=3$.

Volume of revolution - Shells

1. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis:
$y=x^{2}, y=0, x=1, x=6 ;$ about $x=1$
2. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis.
$y=\sin x, y=0, x=2 \pi, x=8 \pi$; about the y-axis
3. Use the method of cylindrical shells to find the volume of solid obtained by rotating the region bounded by the given curves about the x-axis:

$$
y^{2}-3 y+x=0, \quad x=0
$$

4. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis:
$y=x^{2}, \quad y=0, x=1, x=4$; about $x=1$
5. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis: $y=\frac{1}{x}, y=0, x=1, x=9$

Arc length

1. Set up, but do not evaluate, an integral for the length of the curve:
$y=e^{x} \sin x, 0 \leq x \leq \pi / 2$
2. Find the length of the curve for the interval $a \leq v \leq b: \quad y=\ln \left(\frac{e^{v}+1}{e^{v}-1}\right)$
3. Find the length of the curve: $y=\frac{1}{6}\left(x^{2}+4\right)^{3 / 2}, 0 \leq x \leq 2$
4. Find the length of the curve: $x=\frac{y^{4}}{8}+\frac{1}{4 y^{2}}, 1 \leq y \leq 2$
