Areas

1. Find the area of the region bounded by the curves: $y=x^{2}-2 x, y=x+4$
2. Find the area of the region bounded by the curves: $y=\cos x, y=\sin 2 x, x=0, x=\pi / 2$
3. Find the values of c such that the area of the region bounded by the parabolas $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ is 576.
4. Find the area of the region bounded by the curves: $x=2 y^{2}, x=4+y^{2}$
5. Use calculus to find the area of the triangle with the given vertices $(0,0),(2,1),(-1,6)$
6. Find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola
at $(6,36)$, and the x axis.
7. Find the number b such that the line $y=b$ divides the region bounded by the curves $y=x^{2}$ and $y=4$ into two regions with equal area.
8. Find the number b such that the line $y=b$ divides the region bounded by the curves $y=5 x^{2}$ and $y=7$ into two regions with equal area.
9. Find (approximately) the area of the region bounded by the curves: $y=6+x^{2}, y=6+e^{-x^{2}}$
10. Find the positive value of c such that the area of the region bounded by the parabolas $y=x^{2}-c^{2}$ and $y=c^{2}-x^{2}$ is 576 .
