Alternating Series

A series of the form
\[
\sum_{n=1}^{\infty} (-1)^{n-1}a_n = a_1 - a_2 + a_3 - a_4 + \cdots + (-1)^{n-1}a_n + \cdots
\]
converges if
\[
0 < a_{n+1} < a_n \quad \text{for all } n \quad \text{and} \quad \lim_{n \to \infty} a_n = 0.
\]

Example. Show that the following alternating harmonic series converges:
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}.
\]

Series of Both Positive and Negative Terms

Theorem: Convergence of Absolute Values Implies Convergence

If \(\sum |a_n|\) converges, then so does \(\sum a_n\).

Explain how we know that the following series converges
\[
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \ldots.
\]

We say that the series \(\sum a_n\) is
- absolutely convergent if \(\sum a_n\) and \(\sum |a_n|\) both converge.
- conditionally convergent if \(\sum a_n\) converges but \(\sum |a_n|\) diverges.

Test for convergence.

1. \(\sum_{n=1}^{\infty} \frac{1}{n(1 + \ln n)}\)
2. \(\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + n^2 + 8}}{n \ln n + 4}\)
3. \(\sum_{n=2}^{\infty} \frac{n^2}{n \sin^2 n}\)
4. \(\sum_{n=1}^{\infty} \frac{n^3 + 1}{2^n + 1}\)
5. \(\sum_{n=1}^{\infty} \frac{n!}{(2n)!}\)
6. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n + 1}\)
Power Series

A power series about \(x = a \) is a sum of constants times powers of \((x - a)\):

\[
C_0 + C_1(x - a) + C_2(x - a)^2 + \cdots + C_n(x - a)^n + \cdots = \sum_{n=0}^{\infty} C_n(x - a)^n.
\]

A power series may converge for some values of \(x \) and not for others.

Intervals of Convergence

Each power series falls into one of the three following cases, characterized by its radius of convergence, \(R \).

- The series converges only for \(x = a \); the radius of convergence is defined to be \(R = 0 \).
- The series converges for all values of \(x \); the radius of convergence is defined to be \(R = \infty \).
- There is a positive number \(R \), called the radius of convergence, such that the series converges for \(|x - a| < R\) and diverges for \(|x - a| > R\). See Figure 9.11.
- The interval of convergence is the interval between \(a - R \) and \(a + R \), including any endpoint where the series converges.

![Diagram showing the interval of convergence](image)

Figure: Radius of convergence, \(R \), determines an interval, centered at \(x = a \), in which the series converges

\[
\begin{align*}
8. & \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 + 7} \\
9. & \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \ln n} \\
10. & \sum_{n=1}^{\infty} \frac{1}{n^2} \tan \left(\frac{1}{n} \right) \\
11. & \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^n}{n^2} \\
12. & \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^2}{2^n}
\end{align*}
\]
Theorem: Method for Computing Radius of Convergence

To calculate the radius of convergence, R, for the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, use the ratio test with $a_n = c_n(x-a)^n$.

- If $\lim_{n \to \infty} |a_{n+1}/a_n|$ is infinite, then $R = 0$.
- If $\lim_{n \to \infty} |a_{n+1}/a_n| = 0$, then $R = \infty$.
- If $\lim_{n \to \infty} |a_{n+1}/a_n| = K|x-a|$, where K is finite and nonzero, then $R = 1/K$.

Determine radius of convergence and the interval of convergence of the following power series:

1. $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$
2. $\sum_{n=2}^{\infty} \frac{(-1)^n(x-2)^{2n}}{n^2}$
3. $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + \ldots$
4. $(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \ldots + (-1)^{n-1}\frac{(x-1)^n}{n} + \ldots$
5. $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots + (-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!} + \ldots$
6. $1 + 2x + 2^3x^2 + 2^4x^3 + 2^6x^4 + \ldots + 2^{2n-1}x^{2n} + \ldots$
7. $2(x+5)^3 + 3(x+5)^5 + \frac{4(x+5)^7}{2!} + \frac{5(x+5)^9}{3!} + \ldots$
8. $\sum_{n=1}^{\infty} \frac{2^n(x-1)^n}{n}$