Alternating Series

A series of the form

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots$$

converges if

$$0 < a_{n+1} < a_n$$
 for all n and $\lim_{n \to \infty} a_n = 0$.

Example. Show that the following alternating harmonic series converges:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

Series of Both Positive and Negative Terms

Theorem: Convergence of Absolute Values Implies Convergence

If $\sum |a_n|$ converges, then so does $\sum a_n$.

Explain how we know that the following series converges

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \cdots.$$

We say that the series $\sum a_n$ is

- absolutely convergent if $\sum a_n$ and $\sum |a_n|$ both converge.
- conditionally convergent if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Test for convergence.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(1+\ln n)}$$

$$\sum_{n=1}^{\infty} \frac{n-4}{\sqrt{n^3+n^2+8}}$$
2.
$$\sum_{n=2}^{\infty} \frac{n\ln n+4}{n^2}$$
3.
$$\sum_{n=2}^{\infty} \frac{n \sin^2 n}{n^3+1}$$
4.
$$\sum_{n=1}^{\infty} \frac{2^n+1}{n^2^n-1}$$
5.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
6.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n+1)}$$
7.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1}$$

8.
$$\sum \frac{(-1)^{n}}{n^{4}+7}$$
9.
$$\sum \frac{(-1)^{n-1}}{n \ln n}$$
10.
$$n=1 \frac{1}{n^{2}} \tan\left(\frac{1}{n}\right)$$
11.
$$n=1 \frac{(-1)^{n-1}2^{n}}{n^{2}}$$
12.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n^{2}}{2^{n}}$$

Power Series

A **power series** about x = a is a sum of constants times powers of (x - a):

$$C_0 + C_1(x-a) + C_2(x-a)^2 + \dots + C_n(x-a)^n + \dots = \sum_{n=0}^{\infty} C_n(x-a)^n.$$

A power series may converge for some values of *x* and not for others.

Intervals of Convergence

Each power series falls into one of the three following cases, characterized by its radius of convergence, R.

- The series converges only for x = a; the **radius of convergence** is defined to be R = 0.
- The series converges for all values of *x*; the **radius of convergence** is defined to be $R = \infty$.
- There is a positive number *R*, called the **radius of convergence**, such that the series converges for |x a| < R and diverges for |x a| > R. See Figure 9.11.
- The **interval of convergence** is the interval between *a R* and *a* + *R*, including any endpoint where the series converges.

Theorem: Method for Computing Radius of Convergence

To calculate the radius of convergence, *R*, for the power series $n=0^{\infty} C_n(x-a)^n$, use the ratio test with $a_n = C_n(x-a)^n$.

- If $n \to \infty^{|a_{n+1}|/|a_n|}$ is infinite, then R = 0.
- If $\lim_{n \to \infty} |a_{n+1}| |a_n| = 0$, then $R = \infty$.
- If $\lim_{n \to \infty} |a_{n+1}| / |a_n| = K |x a|$, where *K* is finite and nonzero, then R = 1/K.

Determine radius of convergence and the interval o convergence of the following power series:

1.
$$\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$$

2.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n}(x-2)^{2n}}{n^{2}}$$

3.
$$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\dots+\frac{x^{n}}{n!}+\dots$$

4.
$$(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)}{4}+\dots+(-1)^{n-1}\frac{(x-1)^{n}}{n}+\dots$$

5.
$$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\dots+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}+\dots$$

6.
$$1+2^{2}x^{2}+2^{4}x^{4}+2^{6}x^{6}+\dots+2^{2n}x^{2n}+\dots$$

7.
$$2(x+5)^{3}+3(x+5)^{5}+\frac{4(x+5)^{7}}{2!}+\frac{5(x+5)^{9}}{3!}+\dots$$

8.
$$\sum_{n=1}^{\infty}\frac{2^{n}(x-1)^{n}}{n}$$