Alternating Series

A series of the form

$$
\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots+(-1)^{n-1} a_{n}+\cdots
$$

converges if

$$
0<a_{n+1}<a_{n} \text { for all } n \text { and } \lim _{n \rightarrow \infty} a_{n}=0
$$

Example. Show that the following alternating harmonic series converges:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

Series of Both Positive and Negative Terms

Theorem: Convergence of Absolute Values Implies Convergence
If $\sum\left|a_{n}\right|$ converges, then so does $\sum a_{n}$.

Explain how we know that the following series converges

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\cdots
$$

We say that the series $\sum a_{n}$ is

- absolutely convergent if $\sum a_{n}$ and $\sum\left|a_{n}\right|$ both converge.
- conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Test for convergence.

$\begin{array}{ll}\text { 1. } & \sum_{n=1}^{\infty} \frac{1}{n(1+\ln n)} \\ \text { 2. } & \sum_{n=1}^{\infty} \frac{n-4}{\sqrt{n^{3}+n^{2}+8}}\end{array}$
3. $\sum_{n=2}^{\infty} \frac{n \ln n+4}{n^{2}}$
4. $\sum_{n=1}^{\infty} \frac{n \sin ^{2} n}{n^{3}+1}$
5. $\sum_{n=1}^{\infty} \frac{2^{n}+1}{n 2^{n}-1}$
6. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n+1}$
8. $\sum \frac{(-1)^{n}}{n^{4}+7}$
9. $\sum \frac{(-1)^{n-1}}{n \ln n}$
10. $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \tan \left(\frac{1}{n}\right)$
11. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n}}{n^{2}}$
12. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{2}}{2^{n}}$

Power Series

A power series about $x=a$ is a sum of constants times powers of $(x-a)$:

$$
C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+\cdots+C_{n}(x-a)^{n}+\cdots=\sum_{n=0}^{\infty} C_{n}(x-a)^{n}
$$

A power series may converge for some values of x and not for others.

Intervals of Convergence

Each power series falls into one of the three following cases, characterized by its radius of convergence, R.

- The series converges only for $x=a$; the radius of convergence is defined to be $R=0$.
- The series converges for all values of x; the radius of convergence is defined to be $R=\infty$.
- There is a positive number R, called the radius of convergence, such that the series converges for $|x-a|<R$ and diverges for $|x-a|>R$. See Figure 9.11.
- The interval of convergence is the interval between $a-R$ and $a+R$, including any endpoint where the series converges.

Figure: Radius of convergence, R, determines an interval, centered at $x=a$, in which the series converges

Theorem: Method for Computing Radius of Convergence
To calculate the radius of convergence, R, for the power series $\sum_{n=0}^{\infty} C_{n}(x-a)^{n}$, use the ratio test with $a_{n}=C_{n}(x-a)^{n}$.

- If $\lim _{n \rightarrow \infty}\left|a_{n+1}\right|\left|a_{n}\right|_{\text {is infinite, then }} R=0$.
- If $n \rightarrow \infty$
- If $n \rightarrow \infty$

Determine radius of convergence and the interval o convergence of the following power series:

1. $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$
2. $\sum_{n=2}^{\infty} \frac{(-1)^{n}(x-2)^{2 n}}{n^{2}}$.
3. $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots$.
4. $(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots+(-1)^{n-1} \frac{(x-1)^{n}}{n}+\cdots$.
5. $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+\cdots$
6. $1+2^{2} x^{2}+2^{4} x^{4}+2^{6} x^{6}+\cdots+2^{2 n} x^{2 n}+\cdots$.
7. $2(x+5)^{3}+3(x+5)^{5}+\frac{4(x+5)^{7}}{2!}+\frac{5(x+5)^{9}}{3!}+\cdots \cdot$
8. $\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{n}$
