Alternating Series

A series of the form
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Example. Show that the following alternating harmonic series converges:
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Series of Both Positive and Negative Terms
Theorem: Convergence of Absolute Values Implies Convergence
If Y | an| converges, then so does Y. ap.

Explain how we know that the following series converges
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We say that the series Y aj IS
« absolutely convergent if ) a, and Y’ |a,| both converge.

« conditionally convergent if Y a, converges but >’ |a,| diverges.

Test for convergence.
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Power Series

A power series about x = a is a sum of constants times powers of (x - a):
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A power series may converge for some values of x and not for others.

Intervals of Convergence

Each power series falls into one of the three following cases, characterized by its radius of
convergence, R.

The series converges only for x = a; the radius of convergence is defined to be R = 0.
 The series converges for all values of x; the radius of convergence is defined to be

R = oo.

There is a positive number R, called the radius of convergence, such that the series
converges for |x - a] <R and diverges for |x - a| > R. See Figure 9.11.

The interval of convergence is the interval between a - R and a + R, including any
endpoint where the series converges.
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Figure: Radius of convergence, R, determines an interval, centered at x = a, in which
the series converges




Theorem: Method for Computing Radius of Convergence

. 2 Cylx—a)” .
To calculate the radius of convergence, R, for the power series »=0 , use the ratio
test with a, = Cy(x - )"
* If i @1l infinite, then R = 0.
°if nhﬂ}xmnﬂﬂﬂﬂ = U’ then R = oo.

oI i lan g tblanl = K — 2l \where K is finite and nonzero, then R = 1/K.

Determine radius of convergence and the interval o convergence of the following power series:
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