Hill Ciphers

Hill ciphers (invented in 1929) are a type of block cipher: the ciphertext character that replaces a particular plaintext character in the encryption will depend on the neighboring plaintext characters. The encryption is accomplished using matrix arithmetic.

The encryption key for a Hill cipher is a square matrix of integers. These integers are taken from the set $\{0,1, \ldots, n-1\}$, where n is the size of the character set used for the plaintext message. (If this is the usual English alphabet, then $n=26$.) It is important to note that not all such square matrices are valid keys for a Hill cipher. We'll discuss what is needed to create a valid key a bit later.

For now, suppose the key is the matrix $\kappa=\left[\begin{array}{ccc}1 & 4 & 0 \\ 7 & 11 & 2 \\ 0 & 5 & 1\end{array}\right]$ and we want to encrypt the message "time to study" using a Hill cipher with this key. Using the conversion table:

we represent our plaintext message as $19 \begin{array}{llllllllll}19 & 12 & 4 & 19 & 14 & 18 & 19 & 20 & 3 & 24 .\end{array}$ quence of numbers and break it up into rows of length 3 (the size of κ) to get

19	8	12
4	19	14
18	19	20
3	24	$?$

In order for the encryption to proceed, we must do something about the "?" that appears in the last row. It is customary to replace it with the integer representing a plaintext letter that will be easily identified as extraneous when the message is received. Here, we'll use 23 , the representative of the letter "x." We form a matrix from the resulting four rows:

$$
\mu=\left[\begin{array}{ccc}
19 & 8 & 12 \\
4 & 19 & 14 \\
18 & 19 & 20 \\
3 & 24 & 23
\end{array}\right]
$$

Now we compute $\gamma=\mu \kappa$ using ordinary matrix multiplication, except that whenever an entry x does not satisfy $0 \leq x \leq 25$, we replace x with the integer $y \in\{0, \ldots, 25\}$ such that $y \equiv x(\bmod 26)$. In the current example, this results in

$$
\gamma=\left[\begin{array}{ccc}
23 & 16 & 2 \\
7 & 9 & 0 \\
21 & 17 & 6 \\
15 & 1 & 19
\end{array}\right]
$$

 replace each integer with the letter it represents to obtain the ciphertext XQCHJAVRGPBT.

For practice, try encrypting the plaintext "finals are coming" using a Hill cipher with the encryption key κ above, and see if you can get the ciphertext JRDZDOPZMWOOVXG.

The following ciphertext was produced using a Hill cipher with the same encryption key κ we used above: COAOVZOZWJBH.
How do we decrypt it?

First, replace each ciphertext letter with the integer that represents it to get the sequence

$$
\begin{array}{llllllllllll}
2 & 14 & 0 & 14 & 21 & 25 & 14 & 25 & 22 & 9 & 1 & 7,
\end{array}
$$

which yields

$$
\gamma=\left[\begin{array}{ccc}
2 & 14 & 0 \\
14 & 21 & 25 \\
14 & 25 & 22 \\
9 & 1 & 7
\end{array}\right]
$$

Now we must obtain μ from γ and κ. If the relationship $\gamma \equiv \mu \kappa(\bmod 26)$ were an equation instead of a congruence and κ were an invertible matrix, we could solve:

$$
\begin{aligned}
\gamma & =\mu \kappa \\
\gamma \kappa^{-1} & =\mu .
\end{aligned}
$$

Since we have a congruence and not an equation, we have to take more care than this! There are two issues: do we have an inverse for κ, and, if so, what do we do if, (as is likely), κ^{-1} has non-integer entries?

In this case, (as you can verify), we do have an inverse for κ :

$$
\kappa^{-1}=\frac{1}{27}\left[\begin{array}{ccc}
-1 & 4 & -8 \\
7 & -1 & 2 \\
-35 & 5 & 17
\end{array}\right]
$$

However, this inverse doesn't have integer entries. To proceed with our decryption, we need to replace $\frac{1}{27}$ with an integer that has the same behavior, i.e., that produces an answer congruent to 1 modulo 26 when multiplied by 27. (See the discussion on affine ciphers for more about this.) Fortunately, since $27 \equiv 1$ $(\bmod 26)$, we may replace $\frac{1}{27}$ with 1 to obtain:

$$
\begin{aligned}
\mu & \equiv \gamma\left[\begin{array}{ccc}
-1 & 4 & -8 \\
7 & -1 & 2 \\
-35 & 5 & 17
\end{array}\right](\bmod 26) \\
& \equiv\left[\begin{array}{ccc}
18 & 20 & 12 \\
12 & 4 & 17 \\
15 & 11 & 0 \\
13 & 18 & 23
\end{array}\right](\bmod 26)
\end{aligned}
$$

From here, we recover the plaintext "summerplansx," from which we deduce that the message was "summer plans."

At this point, we can specify what is required of a square matrix of integers κ in order for it to be a valid key for a Hill cipher. For the decryption process to succeed, we need κ to be invertible modulo 26, which amounts to requiring that the determinant of κ satisfy $\operatorname{gcd}(\operatorname{det} \kappa, 26)=1$. (We're using a fact from linear algebra about the relationship between determinants and inverses; if this seems mysterious, check out the classical adjoint of a matrix in your favorite linear algebra text.)

Here's a little more practice. The following ciphertext was produced by a Hill cipher with key $\kappa=\left[\begin{array}{cc}2 & 7 \\ 5 & 22\end{array}\right]$: EMRISXCAEGOHJEVI. See if you can recover the plaintext. (Note that with a 2×2 key, your matrices μ and γ must have 2 columns!)

While Hill ciphers provide a significant improvement in security over Vigenère ciphers, they are very easily attacked if a few correct characters of plaintext are already matched to a ciphertext message, a so-called known plaintext attack. For this reason, Hill ciphers are not considered sufficiently secure for sensitive applications.

