Graph Theory Qualifier

May 10, 2011

1. (15 pts.) Prove that for all graphs G and positive integers a and b if $|G| \geq 2^{a+b-2}$ then $\omega(G) \geq a$ or $\alpha(G) \geq b$.

2. (15 pts.) Recall that $T_{n,r}$ is the r-partite graph on n vertices such that every part has size $\lceil \frac{n}{r} \rceil$ or $\lfloor \frac{n}{r} \rfloor$. Prove that among all graphs $G = (V,E)$ on n vertices with $\omega(G) \leq r$, the one with the most edges is $T_{n,r}$. (You may use the fact that this is true for all r-partite graphs.)

3. (15 pts.) Let G be an X,Y-bigraph with $|X| = |Y| = k$ and $\delta(G) \geq \frac{k}{2}$. Prove that G has a 1-factor.

4. (25 pts.) Let G be a planar bipartite graph.
 a) Use Euler’s Formula to prove that $|G| \leq 2|G| - 4$.
 b) Suppose G has an orientation with $d^+(r) \geq 3$ for some vertex $r \in V$. Let $W \subseteq V$ be the set of all vertices w (including r) such that there is a directed path from r to w. Prove that $H = G[W]$ has a vertex v with $d_H^+(v) \leq 1$.
 c) Show that G has an orientation with maximum out-degree at most 2. [Hint: Argue by induction and consider reversing a directed path.]
 d) It is known that every directed graph without a directed odd cycle has a kernel. Use this to show that G is 3-list colorable.
 e) Construct a small example (including lists) of a graph that is bipartite and planar, but not 2-list colorable.

5. (15 pts.) Let $G = (V,E)$ be a nonplanar 3-connected graph with at least six vertices. Show that G contains a subdivision of $K_{3,3}$.

6. (15 pts.) Let $G = (V,E)$ be a 2-edge-connected graph. Show that G has a spanning 2-edge-connected subgraph with $|V| \leq 2|G| - 2$. [Hint: Start with a spanning tree T and add a small set $F \subseteq E$ to T so that $T + F - e$ is connected for every $e \in E(T)$.]