MAT 267: Calculus III For Engineers Test 3 Review

- 1. Evaluate the triple integral $\iiint_E \frac{e^{-2x} \sin^2(z)}{\sqrt{y}} dV$ where $E = [0, 1] \times [1, 2] \times [0, \pi]$.
- 2. Evaluate $\iiint_E 6xy \ dV$ where E lies below the plane z = 1 + x + y and above the region in the xy plane bounded by the curves $y = \sqrt{x}$, y = 0 and x = 1.
- 3. Use a triple integral to find the volume of the region bounded by the cylinder $x^2 + z^2 = 4$ and the planes y = -1 and y + z = 4.
- 4. Convert the triple integral to cylindrical coordinates and evaluate it:

$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} z \, dz \, dx \, dy.$$

- 5. Use cylindrical coordinates to evaluate $\iiint_E z \ dV$ where E is the solid region bounded by the paraboloid $z = 3(x^2 + y^2)$ and the plane z = 1.
- 6. Use cylindrical coordinates to evaluate $\iiint (x + y + z) dV$ where E is the region above the xy plane and below the paraboloid $z = 4 x^2 y^2$.
- 7. Use cylindrical coordinates to find the volume of the region that is inside the cylinder $x^2+y^2 = 16$, above the xy plane, and below the cone $z = 3\sqrt{x^2 + y^2}$.
- 8. Convert the triple integral to spherical coordinates and evaluate it.

$$\int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \int_{0}^{\sqrt{16-x^2-y^2}} (x^2+y^2+z^2)^{-1/2} dz dy dx.$$

- 9. Evaluate $\iiint_E x e^{(x^2+y^2+z^2)^2} dV$ where E is the portion of the unit ball in the first octant.
- 10. Use spherical coordinates to the find the volume of the region that lies above the cone $z = \sqrt{3(x^2 + y^2)}$ and below the hemisphere $z = \sqrt{9 x^2 y^2}$.
- 11. Evaluate $\iiint_E x^2 + y^2 \, dV$ where E is the region between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.
- 12. Consider the region inside the cone $z = \sqrt{x^2 + y^2}$ and under the plane z = 4. Set up the integral for the volume of this region in Cartesian, cylindrical and spherical coordinates. Which is the best choice?
- 13. Evaluate the line integral $\int_C (x+y) ds$ where C is the line segment from (1,3) to (4,6).
- 14. Evaluate the line integral $\int xy \, ds$ where C is the portion of the circle $x^2 + y^2 = 9$ in the first quadrant.
- 15. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = \langle -y, x \rangle$ and C is the top half of the unit circle.

- 16. Find the work (ignoring units) done by the force field $\mathbf{F}(x, y, z) = \langle -y, xz, xy \rangle$ on a particle that moves from the origin to (1, 1, 1) along the curve $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$.
- 17. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle x, y, xy \rangle$ and C is the helix $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$ with $0 \le t \le \pi/4$.
- 18. Let $f(x, y) = e^{-3x} \sin(x + 2y)$. Without doing any integration, find the value of $\int_C \nabla f \cdot d\mathbf{r}$ where C is the arc of the parabola $y = x^2$ starting at (-1, 1) and ending at (1, 1).
- 19. Verify that the vector field $\mathbf{F}(x, y) = \langle 2xy^2 + 4x, 2x^2y + 8y \rangle$ is conservative and find a potential function f such that $\mathbf{F} = \nabla f$.
- 20. Verify that the vector field $\mathbf{F}(x, y) = \langle 6x + y, 2y + x \rangle$ is conservative and find a potential function f such that $\mathbf{F} = \nabla f$.
- 21. The vector field F(x, y, z) = ⟨2x + yz, 2y + xz, xy⟩ is conservative.
 (a) Find a potential function f(x, y, z) such that F = ∇f.
 (b) Use the answer to (a) to evaluate the line integral ∫_C F ⋅ dr where C is the helix parameterized as r(t) = ⟨sin t, cos t, t⟩, 0 ≤ t ≤ π/4.
- 22. Use Green's Theorem to evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle xy + \sin(x), xy^2 + e^y \rangle$ and C is the positively oriented triangle with vertices (0,0), (1,2) and (0,2).
- 23. Use Green's Theorem to evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle 7x + 6y, 8x 3y \rangle$ and C is the positively-oriented boundary curve of the region bounded by $y = x^2$ and y = 4.
- 24. Use Green's Theorem to evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle 4, x^3 \rangle$ and C is the positively-oriented unit circle.

Answers

- 1. $\frac{\pi}{2}(1-e^{-2})(\sqrt{2}-1)$
- 2. 65/28
- 3. 20π
- 4. 4π
- 5. $\pi/9$
- 6. $32\pi/3$
- 7. 128 π
- 16π
- 9. $\pi(e-1)/16$
- 10. $18\pi(1-\sqrt{3}/2)$
- 11. $248\pi/15$
- 12. Cartesian: $\int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \int_{\sqrt{x^2+y^2}}^{4} dz \, dy \, dx$ Cylindrical: $\int_{0}^{2\pi} \int_{0}^{4} \int_{r}^{4} r \, dz \, dr \, d\theta$ Spherical: $\int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{4 \sec \phi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$

Cylindrical coordinates are the best choice.

13. $21\sqrt{2}$ 14. 27/215. π 16. 1/217. 1/418. $e^{-3}\sin 3 - e^{3}\sin 1$ 19. $Q_x = P_y = 4xy \Rightarrow \text{conservative}, f(x, y) = x^2y^2 + 2x^2 + 4y^2 + C$ 20. $Q_x = P_y = 1 \Rightarrow \text{conservative}, f(x, y) = 3x^2 + xy + y^2$ 21. a) $f(x, y, z) = xyz + x^2 + y^2 + C$ b) $\pi/8$ 22. 5/323. 32/324. $3\pi/4$