MAT 267: Calculus III For Engineers Test 2 Review

- 1. Give a geometric description of the domain for each function and sketch it.
 - a) $f(x, y) = \ln(1 x^2 y^2)$ b) $f(x, y) = \sqrt{x} + \sqrt{y}$ c) $f(x, y) = \cos(x^2 + y^2)$ d) $fx, y) = \sqrt{y - x^2}/(1 - x^2)$
- 2. Give a geometric description of the contour curves for each function.
 - a) $f(x, y) = \sqrt{4 x y}$ b) $f(x, y) = 3y - x^2$ c) $f(x, y) = x^2 - y^2$ d) $fx, y) = (x^2 + y^2)^{3/2}$
- 3. Give a geometric description of the level surfaces for each 3-variable function.
 - a) $F(x, y, z) = z x^2 y^2$ b) $F(x, y, z) = 4(x - 2)^2 + 9(y - 1)^2 + z^2$ c) $F(x, y, z) = (x^2 + y^2 + z^2)^{-2}$ d) F(x, y, z) = x + 2y - z
- 4. Sketch the contour of the function $f(x, y) = 2x^2 + y^2$ corresponding to z = 8.
- 5. Find all second partial derivatives of the given functions.

a)
$$f(x, y) = e^{xy} \sin(2y)$$

b) $g(x, y) = xy/(x - y)$

- 6. Find the equation of the tangent plane for each function at the given point.
 - a) $f(x, y) = xe^{xy}$ at (2,0) b) $g(x, y) = 2x^2 + \frac{1}{y}$ at (3,1) c) $h(x, y) = \sqrt{y + \cos^2 x}$ at (0,0)
- 7. Use linearization to approximate f(2.04, 4.99), given that

$$f(2,5) = 6$$
, $f_x(2,5) = -1$, $f_y(2,5) = 3$.

- 8. Use differentials to approximate the change in the volume of a cone with radius r = 3 and height h = 4 if the radius is increased by 0.1 and the height is decreased by 0.2. The volume of a cone is $V(r, h) = \frac{\pi}{3}r^2h$.
- 9. If $u = x^2y^3 + z^4$ and $x = 3t^2 + t + 1$, $y = te^t 2$, $z = \sin t$, find du/dt when t = 0.

- 10. Consider a rectangle with dimensions x and y in cm. If x is growing at a rate of 2 cm/s and y is growing at a rate of 3 cm/s, find the rate at which the length of the diagonal is changing when x = 5 cm and y = 8 cm.
- 11. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ at (s,t) = (0,2), given that

$$w = \sqrt{x^2 + y^2 + z^2}, \quad x = se^t, \quad y = te^s, \quad z = e^{st}.$$

- 12. Use the chain rule to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the implicit surface: $yz + x \ln(y) = z^2$
- 13. Find the rate of change of the function $f(x, y) = x^4 x^2 y^3$ at the point (-1, 3) in the direction of $\theta = 2\pi/3$.
- 14. Find the rate of change of the function $f(x, y, z) = 10e^{-2x^2-3y^2+4z^2}$ at the point (1, 1, 1) in the direction that points toward the origin.
- 15. Find the maximum slope of the surface $z = e^{x^2 y^2}$ at the point (3,3) and the unit vector that points in the direction of maximum increase.
- 16. If $f(x,y) = x^2 + y^2 2x 4y$, find all points where $\nabla f(x,y) = -\mathbf{i} \mathbf{j}$.
- 17. Find a normal vector to the implicit surface $x + y + z = 3e^{xyz}$ at the point (0, 1, 2).
- 18. Find the equations of the tangent plane and normal line for the implicit surface $xyz^3 2z = 6$ at the point (4, 2, 1).
- 19. Find and classify all critical points of each function using the 2nd derivative test.

a)
$$f(x, y) = xy - 2x - 2y - x^2 - y^2$$

b) $f(x, y) = x^3 + 3xy + y^3$

- 20. Find the point(s) on the surface $z^2 = 9 + xy$ that are closest to the origin.
- 21. Find three numbers x, y and z that sum to 27 and whose product is at a maximum.
- 22. Find the dimensions of a rectangular box (with no top) that minimize the surface area if the box must have a volume of 32 ft^3 .
- 23. Find the absolute extrema of f(x, y) = 2xy over the disk $x^2 + y^2 \leq 9$.
- 24. Find the volume of the region that lies between the surfaces $z = 2x^2 + 3y^2 + 8$ and z = 3 and over the rectangle $R = [0, 1] \times [0, 3]$.
- 25. Evaluate the double integral $\int_1^4 \int_1^2 \left(\frac{x}{y} + \frac{y}{x}\right) dy dx$.
- 26. Find the average value of $f(x, y) = e^{2x} \cos(y)$ over the rectangle $R = [0, 2] \times [0, \frac{\pi}{4}]$.
- 27. Integrate $f(x, y) = x^2 \cos(y)$ over the region bounded by y = 0, $y = x^3$ and x = 1.
- 28. Evaluate the double integral by switching the order of integration: $\int_0^1 \int_{2y}^2 e^{x^2} dx dy$.

- 29. Use a double integral to find the volume of the tetrahedron that is under the plane x+y+z=2and in the first octant.
- 30. Evaluate $\iint_D \sin(x^2 + y^2) dA$ where D is the region in the first quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.
- 31. Evaluate $\iint_D \tan^{-1}\left(\frac{y}{x}\right) dA$ where D is the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and between the lines y = 0 and y = x.
- 32. Use a double integral to find the area of one loop of the rose $r = \cos(3\theta)$.
- 33. Find the volume of the region bounded by the surfaces $z = x^2 + y^2$ and $z = 3 3x^2 3y^2$.
- 34. Evaluate the double integral by transforming to polar coordinates:

$$\int_{-2}^{0} \int_{0}^{\sqrt{4-x^2}} x \, dy \, dx$$

Answers

1. a) $D = \{(x, y) \mid x^2 + y^2 < 1\}$ (the region inside the unit circle, not including the circle) b) $D = \{(x, y) \mid x \ge 0, y \ge 0\}$ (the first quadrant, including the axes) c) $D = \mathbb{R}^2$ (the entire xy plane)

d) $D = \{(x, y) \mid y \ge x^2, x \ne \pm 1\}$ (the region on or above the parabola $y = x^2$, with the lines $x = \pm 1$ removed)

- 2. a) parallel lines, all with slope -1
 - b) parabolas with a symmetry axis along y-axis
 - c) hyperbolas centered around the origin
 - d) concentric circles centered around the origin, unevenly spaced
- 3. a) paraboloids with a symmetry axis along z-axis
 - b) concentric ellipsoids centered around the point (2, 1, 0)
 - c) concentric spheres centered around the origin, unevenly spaced
 - d) parallel planes, each with normal vector $\langle 1,2,-1\rangle$
- 4. An ellipse centered at the origin and passing through the points $(\pm 2, 0)$ and $(0, \pm \sqrt{8})$

5. a)

$$f_{xx} = y^{2}e^{xy}\sin(2y)$$

$$f_{xy} = f_{yx} = e^{xy}[(1 + xy)\sin(2y) + 2y\cos(2y)]$$

$$f_{yy} = e^{xy}[(x^{2} - 4)\sin(2y) + 4x\cos(2y)]$$
b)

$$g_{xx} = 2y^{2}/(x - y)^{3}$$

$$g_{xy} = g_{yx} = -2xy/(x - y)^{3}$$
6. a) $z = x + 4y$
b) $z = 12x - y - 16$
c) $z = 1 + \frac{1}{2}y$
7. $f(2.04, 4.99) \approx 5.93$
8. $\Delta V \approx \pi/5$
9. $\frac{du}{dt}|_{t=0} = -4$
10. $\frac{34}{\sqrt{89}} \text{ cm/s}$
11. $\frac{\partial w}{\partial s}|_{(0,2)} = 6/\sqrt{5}, \frac{\partial w}{\partial t}|_{(0,2)} = 2/\sqrt{5}$
12. $\frac{\partial z}{\partial x} = \ln(y)/(2z - y), \frac{\partial z}{\partial y} = (z + \frac{x}{y})/(2z - y)$
13. $-25 - 27\sqrt{3}/2$
14. $20/(\sqrt{3}e)$
15. max slope: $6\sqrt{2}$, unit vector: $\frac{1}{\sqrt{2}}\langle 1, -1 \rangle$

16. $(1/2, 3/2)$
17. $\mathbf{n} = \langle -5, 1, 1 \rangle$
18. Tangent plane: $x + 2y + 11z = 19$, Normal line: $\langle 4 + t, 2 + 2t, 1 + 11t \rangle$
19. a) $(-2, -2)$ local max b) $(0, 0)$ saddle, $(-1, -1)$ local max
20. $(0, 0, \pm 3)$
21. $(x, y, z) = (9, 9, 9)$
22. $(x, y, z) = (4, 4, 2)$ ft
23. abs min = -9 at $\left(-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$, $\left(\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)$ abs min = 9 at $\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$, $\left(-\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)$
24. 44
25. $\frac{21}{2}\ln(2)$
26. $\frac{e^4-1}{\pi\sqrt{2}}$
27. $\frac{1}{3}(1-\cos 1)$
28. $\int_0^2 \int_0^{x/2} e^{x^2} dy dx = \frac{1}{4}(e^4 - 1)$
29. $4/3$
30. $\frac{\pi}{4}(\cos 1 - \cos 9)$
31. $3\pi^2/64$
32. $\pi/12$
33. $9\pi/8$
348/3