MAT 267: Calculus III For Engineers Final Review

- 1. Find an equation $\mathbf{r}(t)$ for the line that passes through the origin at t = 3 and is orthogonal to the plane x + y 3z = 1.
- 2. Find an equation of the plane through the points (2, 0, 0), (0, 4, 0), and (0, 0, 8).
- 3. Find an equation $\mathbf{r}(t)$ for the curve of intersection between the sphere $x^2 + y^2 + z^2 = 9$ and the plane y = 2.
- 4. Find the unit tangent vector to the curve $\mathbf{r}(t) = \langle t^3, e^{t-1}, 2\ln(t) \rangle$ at t = 1.
- 5. Find an equation for the tangent line of $\mathbf{r}(t) = \langle 2t+1, t^2+8t-1, \sin(4t) \rangle$ at t = 0.
- 6. Find the arc length of the curve $\mathbf{r}(t) = \langle 1, t^2, t^3 \rangle$ from $0 \le t \le 1$.
- 7. A particle has a position vector $\mathbf{r}(t) = \langle te^{-t}, t^3 2t, e^{-4t} \rangle$. Evaluate each of the following at t = 0.
 - (a) the velocity vector, (b) the acceleration vector, (c) the speed
- 8. A particle with mass m = 0.2 kg has a force vector $\mathbf{F}(t) = \langle 1, t, t^3 \rangle$ N acting on it. At t = 0, its velocity is $\mathbf{v}(0) = \langle 1, -2, 1 \rangle$ m/s. Evaluate each of the following at t = 1.
 - (a) the acceleration vector, (b) the velocity vector
- 9. Find the equation of the tangent plane for the function $f(x, y) = x^2 y + \frac{y^2}{x}$ at the point (1,3).
- 10. Let $z = \sqrt{2x + y}$, $x = uv^2$ and $y = u\sin(v)$. Evaluate $\partial z/\partial u$ and $\partial z/\partial v$ when $(u, v) = (1, \pi)$.
- 11. Let $f(x,y) = x^4 + x^2y^3$. Evaluate the following at the point (1,2).
 - a) the gradient vector
 - b) the direction (unit vector) of steepest ascent
 - c) the directional derivative along $\mathbf{v} = \langle 3, -1 \rangle$
- 12. Find the unit normal vector to the implicit surface $xz^3 + e^{yz} = 9$ at the point (1, 0, 2).
- 13. Find and classify all critical points of the function $f(x, y) = x^2 xy + y^2 9x + 6y$.
- 14. Find the point on the plane x + y + z = 2 that is closest to the point (3, 0, 1).
- 15. Evaluate the double integral by reversing the order of integration:

$$\int_{0}^{1} \int_{4y}^{4} e^{x^{2}} dx dy$$

- 16. Evaluate $\iint_D y^2 dA$ where D is the inside of the triangle with vertices (0,0), (2,0), and (2,4).
- 17. Evaluate the double integral by switching to polar coordinates.

$$\int_0^2 \int_0^{\sqrt{4-x^2}} e^{-x^2 - y^2} \, dy \, dx.$$

- 18. Find the volume of the solid bounded by the paraboloids $z = 3(x^2 + y^2)$ and $z = 4 x^2 y^2$.
- 19. Find the volume of the region bounded by the surfaces $y = x^2$, z = 0 and y + z = 1.
- 20. Evaluate the triple integral $\iiint_E xz \ dV$ where E is the part of the ball $x^2 + y^2 + z^2 \le 4$ in the first octant.
- 21. Evaluate the line integral $\int_C xy \, ds$ where C is the line segment from (0,0) to (2,3).
- 22. Find the work done by the force field $\mathbf{F}(x, y) = \langle 1, x \rangle$ on a particle that moves from (5,0) to (0,5) along the circle $x^2 + y^2 = 25$.
- 23. Define the vector field $\mathbf{F}(x, y, z) = \langle e^{yz}, xze^{yz}, xye^{yz} \rangle$.
 - a) Prove that **F** is conservative.
 - b) Find a potential function f such that $\nabla f = \mathbf{F}$.
 - c) Use f to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve parameterized as $\mathbf{r}(t) = \langle 4t + 1, t^2, t \rangle, \ 0 \le t \le 2.$
- 24. Use Green's Theorem to evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle x + y, xy y \sin(y^2) \rangle$ and *C* is the positively oriented curve that encloses the circular sector bounded by the *x*-axis, the line $y = x/\sqrt{3}$ and the unit circle.
- 25. Evaluate the curl and divergence of the vector field $\mathbf{F} = \langle x^2 + 2yz, y^2 z^3, 4xyz \rangle$ at the point (-1, 4, 2).
- 26. Parameterize the portion of the cylinder $x^2 + z^2 = 9$ in the first octant with $y \leq 5$.
- 27. Find the surface area of the part of the cone $z = \sqrt{8(x^2 + y^2)}$ that is under the plane z = 6.
- 28. Evaluate the surface integral $\iint_S 3x \, dS$ where S is parameterized as $S(u, v) = \langle u \cos(v), u \sin(v), v \rangle$, $0 \le u \le 1$ and $0 \le v \le \pi/4$.
- 29. Find the flux of the vector field $\mathbf{F} = \langle -y, x, z^2 \rangle$ through the part of the paraboloid $z = 3x^2 + 3y^2$ between z = 0 and z = 1 with upward orientation.
- 30. Use the divergence theorem to find the flux of the vector field $\mathbf{F} = \langle 2x, 3y, z^2 \rangle$ through the sphere $x^2 + y^2 + z^2 = 9$.

Answers

1.	$\mathbf{r}(t) = \langle t-3, t-3, -3t+9 \rangle$
2.	4x + 2y + z = 8
3.	$\mathbf{r}(t) = \langle \sqrt{5}\cos(t), 2, \sqrt{5}\sin(t) \rangle$
4.	$\mathbf{\hat{v}} = \frac{1}{\sqrt{14}} \langle 3, 1, 2 \rangle$
5.	$\mathbf{L}(t) = \langle 1 + 2t, -1 + 8t, 4t \rangle$
6.	$\frac{1}{27}(13^{3/2}-8)$
7.	a) $\mathbf{v}(0) = \langle 1, -2, -4 \rangle$ m/s
	b) $\mathbf{a}(0) = \langle -2, 0, 16 \rangle \text{ m/s}^2$
	c) $ \mathbf{v}(0) = \sqrt{21} \text{ m/s}$
8.	a) $\mathbf{a}(1) = \langle 5, 5, 5 \rangle \text{ m/s}^2$
	b) $\mathbf{v}(1) = \langle 6, 0.5, 2.25 \rangle$ m/s
9.	z = -3x + 7y - 6
10.	$\frac{\partial z}{\partial u}(1,\pi) = \frac{\pi}{\sqrt{2}}$
	$\frac{\partial z}{\partial v}(1,\pi) = \sqrt{2}\pi - \frac{1}{2\sqrt{2}\pi}$
11.	a) $\nabla f(1,2) = \langle 20, 12 \rangle$
	b) $\hat{\mathbf{u}} = \frac{1}{\sqrt{34}} \langle 5, 3 \rangle$
	c) $D_{\mathbf{v}}f(1,2) = \frac{48}{\sqrt{10}}$
12.	$\mathbf{\hat{n}} = \frac{1}{\sqrt{53}} \langle 4, 1, 6 \rangle$
13.	(4, -1) local minimum
14.	$\left(\frac{7}{3},-\frac{2}{3},\frac{1}{3}\right)$
15.	$\frac{1}{8}(e^{16}-1)$

16. $\frac{32}{3}$ 17. $\frac{\pi}{4}(1-e^{-4})$ 18. 2π 19. $\frac{8}{15}$ 20. $\frac{32}{15}$ 21. $2\sqrt{13}$ 22. $\frac{25\pi}{4} - 5$ 23. a) $\nabla \times \mathbf{F} = \mathbf{0}$ b) $f(x, y, z) = xe^{yz} + C$ c) $9e^8 - 1$ 24. $\frac{1}{3} - \frac{\pi}{12} - \frac{\sqrt{3}}{6} \approx -0.2171$ 25. curl $\mathbf{F}=\langle 4,-24,-4\rangle$ div $\mathbf{F} = -10$ 26. $\mathbf{r}(u,v) = \langle 3\cos(u), v, 3\sin(u) \rangle$ $0 \le u \le \pi/2, \ 0 \le v \le 5$ 27. $\frac{27\pi}{2}$ 28. $2 - \frac{1}{\sqrt{2}}$ 29. $\frac{\pi}{9}$ 30. 180π