
Linear Recurrence Relations

Concepts:

• Define linear homogeneous recurrence relations of degree k with constant coefficients.

• Distinguish between linear versus nonlinear, and homogeneous versus nonhomogeneous recurrence relations.

• Compute a closed form solution of a linear homogeneous recurrence relation with constant coefficients.

• Prove statements about recursively defined sequences using induction.

• Set up recurrence relations in application problems.

Problems:

1. Complete the following statements.

(a) Let B and C be real numbers. The characteristic equation of the linear recurrence relation of degree two
of the form an = Ban−1 + Can−2 is . . .

(b) Let B and C be real numbers. If the characteristic equation of the linear recurrence relation of degree
two of the form an = Ban−1+Can−2 has two distinct real zeros r1 and r2, then the general solution is . . .

(c) Let B and C be real numbers. If the characteristic equation of the linear recurrence relation of degree
two of the form an = Ban−1 + Can−2 has a repeated root r0, then the general solution is . . .

2. Characterize the following recurrence relations as linear homogeneous, linear nonhomogeneous, or nonlinear;
with constant or nonconstant coefficients, and find their degrees.

(a) an = 6an−1 + 3an−2 − 4an−4.

(b) an+1 = n2an−1 + nan−2 − 2nan−3.

(c) an+2 = n2an−1 + nan−2 − 2n.

(d) an = an−1an−2 − 3an−4.

3. True or False? The degree of the linear recurrence relation and the degree of the corresponding characteristic
polynomial are equal.

4. What is the general solution of the linear recurrence relation with the given characteristic equation:

(a) r2 − 2 = 0.

(b) r2 + 4 = 0.

(c) (r + 9)2 = 0.

(d) (r − 2)2(r + 3) = 0.
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(e) (r + 1)(r − 2)(r + 2) = 0.

5. Find a closed-form solution of the following recurrence relations. Simplify your answer.

(a) an = 8an−1 − 16an−2 for n ≥ 2 with initial conditions a0 = 4 and a1 = 6.

(b) an = 5an−1 − 6an−2 for n ≥ 2 with initial conditions a0 = 2 and a1 = 8.

(c) an = −4an−2 for n ≥ 2 with initial conditions a0 = 0 and a1 = 2.

i. Write the closed-form solution using complex numbers.

ii. Reduce the solution from i. to a piece-wise formula that only contains real numbers.

iii. Use both formulas from i. and ii. to find a6 and a7, and give your answer as a real number.

6. Suppose A is the set of bit strings recursively defined by

10 ∈ A

b ∈ A → 111b ∈ A

b ∈ A → 0b ∈ A.

Let an be the number of bit strings in A of length n, for n ≥ 0. Determine a0, a1, a2 and a recurrence relation
for n ≥ 3. Make sure to justify your recurrence relation carefully. In particular, you must make it clear that
you are not double-counting bit strings.

7. Suppose B is the set of bit strings recursively defined by

10 ∈ B

b ∈ B → 111b ∈ B

b ∈ B → 1b ∈ B.

Let bn be the number of bit strings in B of length n, for n ≥ 0. Determine b0, b1 and b2.

This problem superficially looks very similar to the previous problem, only the 2nd recursion rule is slightly
different. Can we use the same reasoning that we used in the previous problem to find a recurrence relation
for bn for n ≥ 3?

Is it true that bn = bn−1 + bn−3 for n ≥ 3? Explain your answer.

8. A ternary string is a finite sequence of characters of 0’s, 1’s and 2’s. Let an be the number of ternary strings
of length n which do not contain the strings 12 or 11.

(a) Evaluate a1 and a2.

(b) Give a recurrence relation for an in terms of previous terms for n ≥ 3. Explain how you set up the
recurrence relation.
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9. Let the sequence {an} be defined recursively by a1 = 3, an = 2an−1 + 2n−1 for all positive integers n. Use
induction to prove that an = 2n + n2n−1 for all positive integers n.

Application Challenge Problems:

10. Let an be the number of ways a person can climb n stairs, if this person can only take only 1 or 2 stairs at a time.

(a) Evaluate a1 and a2 and give a brief explanation.

(b) Give a recurrence relation for an in terms of previous terms for n ≥ 2.

(c) Find the general solution for this linear recurrence relation.

(d) Find a closed-form solution for an.

11. Let T (n) be the number of arithmetic operations (additions, subtractions, multiplications) used in a “naive
recursive calculation” of an by the recursive formula an = 5an−1−6an−2, n ≥ 2, with initial conditions a0 = 2
and a1 = 8. Use induction to show that T (n) ≥ 1.5n−1 for n ≥ 2. (We assume that the recursive calculation
does not store the already calculated values.)

12. The closed-form solution for an = 5an−1 − 6an−2, n ≥ 2, with initial conditions a0 = 2 and a1 = 8 is
an = (−2) · 2n + 4 · 3n. (See Problem 5.(b)).

(a) Let us assume that you work for a company, and your task is find the values of a10 and a50.

What formula would you use in your algorithm, the recursive formula an = 5an−1− 6an−2 or the closed-
form formula an = (−2) · 2n + 4 · 3n? Explain your answer.

(b) If one operation requires only a nanosecond, at least how many years will the recursive algorithm take
to complete for n = 100?

(c) Write two short programs which calculate a10 and a50. Use the recursive formula for the first, and the
closed-form formula for the second program. What did you notice between the two approaches?
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Solutions:

1. Complete the following statements.

(a) Let B and C be real numbers. The characteristic equation of the linear recurrence relation of degree two
of the form an = Ban−1 + Can−2 is r2 −Br − C = 0.

(b) Let B and C be real numbers. If the characteristic equation of the linear recurrence relation of degree
two of the form an = Ban−1 + Can−2 has two distinct real zeros r1 and r2, then the general solution is
an = α1r

n
1 + α2r

n
2 where α1 and α2 are arbitrary real numbers.

(c) Let B and C be real numbers. If the characteristic equation of the linear recurrence relation of degree two
of the form an = Ban−1+Can−2 has a repeated root r0, then the general solution is an = α1r

n
0 +α2nr

n
0

where α1 and α2 are arbitrary real numbers.

2. Characterize the following recurrence relations as linear homogeneous, linear nonhomogeneous, or nonlinear;
with constant or nonconstant coefficients, and find their degrees.

(a) an = 6an−1 + 3an−2 − 4an−4.

This is a linear homogeneous recurrence relation of degree 4 with constant coefficients. It is homogeneous
because all terms are of the form f(n)aj .

(b) an+1 = n2an−1 + nan−2 − 2nan−3.

This is a linear homogeneous recurrence relation of degree 4 with nonconstant coefficients. It is homoge-
neous because all terms are of the form f(n)aj .

(c) an+2 = n2an−1 + nan−2 − 2n.

This is a linear nonhomogeneous recurrence relation of degree 4 with nonconstant coefficients. It is
nonhomogeneous because of the 2n term.

(d) an = an−1an−2 − 3an−4.

This is a nonlinear recurrence relation of degree 4 with constant coefficients. It is nonlinear because of
the an−1an−2 term.

3. True or False? The degree of the linear recurrence relation and the degree of the corresponding characteristic
polynomial are equal.

True.

4. What is the general solution of the linear recurrence relation with characteristic equation:

(a) r2 − 2 = 0.

an = α1(
√
2)n + α2(−

√
2)n, where α1 and α2 are arbitrary real numbers.
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(b) r2 + 4 = 0.

an = α1(2i)
n + α2(−2i)n, where α1 and α2 are complex conjugates.

(c) (r + 9)2 = 0.

an = α1(−9)n + α2n(−9)n, where α1 and α2 are arbitrary real numbers.

(d) (r − 2)2(r + 3) = 0.

an = α12
n + α2n2

n + α3(−3)
n
, where α1, α2 and α3 are arbitrary real numbers.

(e) (r + 1)(r − 2)(r + 2) = 0.

an = α1(−1)n + α22
n + α3(−2)n, where α1, α2 and α3 are arbitrary real numbers.

5. Find a closed-form solution of the following recurrence relations. Simplify your answer.

(a) an = 8an−1 − 16an−2 for n ≥ 2 with initial conditions a0 = 4 and a1 = 6.

The characteristic equation is r2 − 8r + 16 = 0. Thus, r1 = r2 = 4 and the general solution is
an = p · 4n + q · n · 4n where p, q are arbitrary real numbers.

Using the given initial conditions we obtain:

a0 = 4 = p+ 0 and a1 = 6 = 4p+ 4q.

Thus, p = 4 and q = −2.5, and the closed form solution is an = 4 · 4n − 2.5 · n · 4n = 4n+1 − 2.5 · n · 4n.

(b) an = 5an−1 − 6an−2 for n ≥ 2 with initial conditions a0 = 2 and a1 = 8.

The characteristic equation is r2 − 5r + 6 = 0. Thus, r1 = 2 and r2 = 3 and the general solution is
an = p · 2n + q · 3n where p, q are arbitrary real numbers.

Using the given initial conditions we obtain:

a0 = 2 = p+ q and a1 = 8 = 2p+ 3q.

Thus, p = −2 and q = 4 and the closed form solution is an = (−2) · 2n + 4 · 3n = −2n+1 + 4 · 3n .

(c) an = −4an−2 for n ≥ 2 with initial conditions a0 = 0 and a1 = 2.

i. Write the closed-form solution using complex numbers.

The characteristic equation is r2 + 4 = 0. Thus, r1 = −2i and r2 = 2i and the general solution is
an = (a+ bi) · (−2i)n + (a+ bi) · (2i)n with arbitrary real numbers a, b.

Using the given initial conditions we obtain:
a0 = 0 = (a+ bi) + (a− bi) = 2a and a1 = 2 = (a+ bi)(−2i) + (a− bi)(2i).
From the first equation we obtain a = 0, and from the second equation we derive that b = 1

2 .

Hence the closed form solution is an = ( i
2 ) · (−2i)n + (− i

2 ) · (2i)
n.

ii. Reduce the solution from i. to a piece-wise formula that only contains real numbers.

Applying the laws of exponentiation, we obtain
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an = ( i
2 ) · (−2i)n + (− i

2 ) · (2i)
n = (−1)nin+12n−1 − in+12n−1 = in+12n−1((−1)n − 1).

If n is even, (−1)n = 1, and then an = in+12n−1((−1)n − 1) = 0.

If n is odd, (−1)n = −1, and then an = in+12n−1((−1)n − 1) = −in+12n = −(i2)
n+1
2 2n =

−(−1)
n+1
2 2n = (−1)

n+3
2 2n = (−1)

n−1
2 2n. Note that, when n is odd, (−1)

n+3
2 = (−1)

n−1
2 . Thus,

an =

{
0 if n is even

(−1)
n−1
2 · 2n if n is odd.

.

iii. Use both formulas from i. and ii. to find a6 and a7, and give your answer as a real number.

First formula: a6 = ( i
2 ) · (−2i)6 + (− i

2 ) · (2i)
6 = (−32i) + (32i) = 0.

Second formula: Since 6 is even, a6 = 0.

First formula: a7 = ( i
2 ) · (−2i)7 + (− i

2 ) · (2i)
7 = (−64) + (−64) = −128.

Second formula: a7 = (−1)
7−1
2 · 27 = −128.

6. Suppose A is the set of bit strings recursively defined by

10 ∈ A

b ∈ A → 111b ∈ A

b ∈ A → 0b ∈ A.

Let an be the number of bit strings in A of length n, for n ≥ 0. Determine a0, a1, a2 and a recurrence relation
for n ≥ 3. Make sure to justify your recurrence relation carefully. In particular, you must make it clear that
you are not double-counting bit strings.

a0 = 0, a1 = 0 and a2 = 1, since 10 is only one element of length 2 and there are no elements of length 1 and
0 in the set.

For n ≥ 3, any bit string c of length n in A is generated recursively by one of the following mutually exclusive
alternatives:

Case 1: c = 111b, where b is a bit string of length n− 3 in A. There are an−3 such bit strings.

Case 2: c = 0b, where b is a bit string of length n− 1 in A. There are an−1 such bit strings.

Case 2 only generates bit strings starting with 0, which can not be generated in Case 1. Furthermore any bit
string generated in Case 1 can not be generated in Case 2. Thus, Case 1 and Case 2 are mutually exclusive,
so we don’t generate bit strings multiple times. There is exactly one path to get to each element of A in the
recursion tree from the initial element.

Hence, an = an−1 + an−3, n ≥ 3, with initial conditions a0 = 0, a1 = 0 and a2 = 1. Note that this is a linear
homogeneous recurrence relation of degree 3.

7. Suppose B is the set of bit strings recursively defined by:

10 ∈ B

b ∈ B → 111b ∈ B

b ∈ B → 1b ∈ B.
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Let bn be the number of bit strings in B of length n, for n ≥ 0. Determine b0, b1 and b2.

This problem superficially looks very similar to the previous problem, only the 2nd recursion rule is slightly
different. Can we use the same reasoning that we used in the previous problem to find a recurrence relation
for bn for n ≥ 3?

Is it true that bn = bn−1 + bn−3 for n ≥ 3? Explain your answer.

b0 = 0, b1 = 0 and b2 = 1, since 10 is only one element of length 2 and there are no elements of length 1 and
0 in the set.

We can not use the same idea. In the previous problem, a string in the set A could be generated only one
way. In this problem the same strings in B can be generated multiple times. That is, there are multiple paths
to get to some elements of B in the recursion tree.

For example, the string 11110 can be generated by applying the first rule on 10, or by applying the 2nd rule
three times in cycles. Therefore the recursive rules are not mutually exclusive in this problems.

The formula bn = bn−1 + bn−3 already fails for n = 5. 11110 is the only string of length 5 in B, so b5 = 1.
According to the formula b5 = b4 + b2, b5 should be 2, since b2 = 1 and b4 = 1. Note that 1110 is the only
string in B with length 4.

The recursive formula bn = bn−1+ bn−3 counts many elements multiple times, so bn = bn−1+ bn−3 is not true
for all n ≥ 3.

8. A ternary string is a finite sequence of characters of 0’s, 1’s and 2’s. Let an be the number of ternary strings
of length n which do not contain the strings 12 or 11.

(a) Evaluate a1 and a2.

a1 = 3, since there are three ternary strings of length one, 0, 1 and 2, which do not contain the strings 12
or 11. The following ternary strings of length two 00, 01, 10, 02, 20, 22 and 21 don’t contain the strings
12 or 11, thus a2 = 7.

(b) Give a recurrence relation for an in terms of previous terms for n ≥ 3. Explain how you set up the
recurrence relation.

If n ≥ 3, then we can generate any such bit string c recursively by considering the following three alter-
natives:

Case 1: if c = 0b, where b is a ternary string of length n − 1 not containing 12 or 11. There are an−1

ways to choose b.

Case 2: if c = 2b, where b is a ternary string of length n − 1 not containing 12 or 11. There are an−1

ways to choose b.

Case 3: if c = 10b, where b is a ternary string of length n − 2 not containing 12 or 11. There are an−2

ways to choose b.

Thus, an = 2an−1+an−2 for n ≥ 3. We counted all the possibilities, since a ternary string not containing
12 or 11 either starts with a 0, or a 2, or 10, there are no other options. We did not double count any
possibilities, since these cases are mutually exclusive.

Note that this is a second order (degree 2) linear homogeneous relation with constant coefficients.

9. Let the sequence {an} be defined recursively by a1 = 3, an = 2an−1 + 2n−1 for all positive integers n. Use
induction to prove that an = 2n + n2n−1 for all positive integers n.

Proof:
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Basis Step: The n = 1 case is true, since a1 = 3 by definition and 2n + n2n−1 = 3 for n = 1.

Inductive Step: Assume that an = 2n + n2n−1 has been proved for an arbitrary positive integer n.

We wish to prove that an+1 = 2n+1 + (n+ 1) · 2n.

Using the inductive hypothesis and the recursive definition,

an+1 = 2an + 2n = 2(2n + n2n−1) + 2n = 2n+1 + n2n + 2n = 2n+1 + (n+ 1) · 2n which shows that an+1 has
the required form.

The proof is completed by induction.

Application Challenge Problems:

10. Let an be the number of ways a person can climb n stairs, if this person can only take 1 or 2 stairs at a time.

(a) Evaluate a1 and a2 and give a brief explanation.

a1 = 1. A person can climb 1 stair only in 1 way.

a2 = 2. A person can climb 2 stairs in two ways, stepping 1 stair twice or stepping 2 stairs at once.

(b) Give a recurrence relation for an in terms of previous terms for n ≥ 2. Explain how you get your recur-
rence relation.

If n ≥ 3, then a person can climb n stairs the following two ways:

Case 1: start with a step of 1 and climb the rest of the n− 1 stairs, which can be climbed an−1 ways.

Case 2: start with a step of 2 stairs and climb the rest of the n−2 stairs, which can be climbed an−2 ways.

Thus, an = an−1 + an−2 for n ≥ 3. A person can start the climbing with either stepping 1 stair or
stepping 2 stairs, therefore we counted all the possibilities, and we did not double count any possibilities,
since the cases are exclusive.

(c) Find the general solution for this linear recurrence relation.

The characteristic equation is r2 − r − 1 = 0. Thus, r1 = 1−
√
5

2 and r2 = 1+
√
5

2 .

The general solution is an = p · ( 1−
√
5

2 )n + q · ( 1−
√
5

2 )n, where p, q are arbitrary real numbers.

(d) Find a closed-form solution for an.

Let us define a0 = 1. Note that a0 + a1 = a2 is satisfied.

Using the given initial conditions we obtain:

a0 = 1 = p+ q

a1 = 1 = p( 1−
√
5

2 ) + q( 1+
√
5

2 )

Thus, p =
√
5−1
2
√
5

and q =
√
5+1

2
√
5

and the closed form solution is

an = (
√
5−1
2
√
5
) · ( 1−

√
5

2 )n + (
√
5+1

2
√
5
) · ( 1+

√
5

2 )n

Note the an is a shifted Fibonacci sequence. In fact an = fn+1 for n ≥ 0.
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a0 = 1, a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 8 . . . and

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8 . . .

11. Let T (n) be the number of arithmetic operations (additions, subtractions, multiplications) used in a “naive
recursive calculation” of an by the recursive formula an = 5an−1−6an−2, n ≥ 2, with initial conditions a0 = 2
and a1 = 8. Use induction to show that T (n) > 1.5n−1 for n ≥ 2. (We assume that the recursive calculation
does not store the already calculated values.)

Proof: First we will set up a recurrence relation for T (n). It takes T (n− 1) operations to calculate an−1 and
T (n − 2) operations for an−2. In addition 2 extra multiplications and a subtraction are required to find the
value of an. Thus, T (n) = T (n− 1) + T (n− 2) + 3, n ≥ 2, with initial conditions T (0) = 0 and T (1) = 0.

(Note that this is a second order linear nonhomogeneous relation with constant coefficients and the exact
solution can be found in a systematic way as discussed in the book.)

Basis Step: In order to verify the base case, we need to show that T (n) > 1.5n−1 for n = 2 and n = 3.

For n = 2, T (2) = T (1) + T (0) + 3 = 3 and 3 > 1.52−1,

and for n = 3, T (3) = T (2) + T (1) + 3 = 6 and 6 > 1.53−1 = 2.25.

Inductive Step: Assume T (n) > 1.5n−1 and T (n − 1) > 1.5n−2 have been proved for an arbitrary integer
n, n ≥ 3.

Now we wish to show that T (n+ 1) ≥ 1.5n.

According to the recursive formula for T (n+ 1) and the inductive hypothesis,

T (n+ 1) = T (n) + T (n− 1) + 3 > 1.5n−1 + 1.5n−2 + 3 > 1.5n−1 + 1.5n−2 = 1.5n−1(1 + 1.5−1) =

1.5n−1(1 + 2
3 ) = 1.5n−1 · 5

3 > 1.5n−1 · 3
2 = 1.5n.

Thus, by the Principle of Mathematical Induction we have proved that T (n) > 1.5n−1 for n ≥ 2, i.e., calcu-
lating an by the given recursive formula requires more than 1.5n arithmetic operations for n ≥ 2.

12. The closed-form solution for an = 5an−1 − 6an−2, n ≥ 2, with initial conditions a0 = 2 and a1 = 8 is
an = (−2) · 2n + 4 · 3n. (See Problem 5.(b)).

(a) Let us assume that you work for a company, and your task is find the values of a10 and a50.

What formula would you use in your algorithm, the recursive formula an = 5an−1− 6an−2 or the closed-
form formula an = (−2) · 2n + 4 · 3n? Explain your answer.

The closed-form formula will calculate an much more efficiently than the recursive formula as n increases.

According to the previous problem, T (n) > 1.5n−1. This means the number of arithmetic operations,
that are used in the calculation of an by the recursive formula, grows exponentially as n increases. The
running time of this algorithm would exceed the estimated life time of the universe even for relatively
small values of n.

On the other hand the closed-form formula an = (−2) · 2n + 4 · 3n uses roughly 2n+ 1 arithmetic opera-
tions, 2n multiplications and an addition, which has linear running time.
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(b) If one operation requires only a nanosecond, at least how many years will the recursive algorithm take
to complete for n = 100?

For n = 100, the recursive formula uses more than 1.599 ≈ 2.7 · 1017 operations. (For comparison notice
that the closed-form formula uses about 2 · 100 + 1 = 201 operations.)

Thus, with recursive formula, it would take more than 2.7·1017·10−9

60·60·24·365.25 ≈ 8.56 years to calculate a100.

(c) Write two short programs which calculate a10, a50. Use the recursive formula for the first, and the
closed-form formula for the second program. What did you notice between the two approaches?

The following Python program calculates an recursively and outputs an for a hard-coded value of n (here
n = 10) followed by the time, in seconds, the computation required.

The output of the program is 234148, 5.1975250244140625e− 05,

i.e. a10 = 234148, and the computation was essentially instantaneous.

If we alter the third line of the program to print(a(50)), the output is 2871591948515610541395748,
4046.326828479767

i.e. a50 = 2871591948515610541395748, and the computation took over 4046 seconds, or over 67 minutes.

The following Python program computes an, for a hard-coded value of n (here n = 10) using the closed
form of the sequence an:

It produces the output 234148, 3.457069396972656e− 05.

We see that the computed value for a10 = 234148 agrees with our recursive computation, and the calcu-
lation was once again virtually instantaneous, unsurprisingly.

If we change the third line of the program to n = 50, the dramatic improvement in run time becomes ap-
parent. The program then produces the output 2871591948515610541395748, 3.0994415283203125e−05.

Again, we find that a50 = 2871591948515610541395748, but this time, the calculation was near-instantaneous,
instead of taking over an hour. If we take the measured times at face value, this calculation was about
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1.3 · 108 or over 100 million times faster.

Note that these time values depend on the computer used, and even vary when the program is re-run on
the same computer.
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