Induction

Concepts:

e State the Principle of Mathematical Induction.

e Use “Basis Step” and “Inductive Step” structure in rigorous proofs.

Write rigorous proofs by induction of summation formulas, divisibility statements, inequalities and equalities
between two mathematical expressions.

Identify common mistakes in incorrect proofs.

Notes:

Suppose P(n) represents a statement for every positive integer n. In your proof make sure P(n) represents
the statement and not an algebraic expression about the statement being made.

n—1 n
e For example: Let P(n) denote the statement > 2-3% = 3" —1 for n > 1. P(n) is neither Y 2-3* nor 3" — 1.
k=0 k=0
P(n) is a proposition valued function (predicate), whose output value is either true or false for each input n.
In this particular case P(n) is true for all positive integer n which can be proved by induction.
e Declare P(n) at the beginning of the proof.

e Make sure that you always state the inductive hypothesis, and you always indicate the step in which you
recall the inductive hypothesis.

Problems:
1. Complete the blanks in the following paragraph to prove the statement P(n) for all positive integers n.

e To prove a mathematical statement P(n) for all positive integers n, first we verify P(1). This step is
called ...

e Then we verify that the conditional statement ... for all positive integers n.
This step is called ...

e To prove the statement Vn(P(n) — P(n + 1)), we assume ... has been proved for an arbitrary positive
integer n and prove ...

e After proving the previous step, the statement P(n) — P(n 4+ 1) is justified by for all n by the rule of
inference called ...

e Finally, we make a conclusion that the statement P(n) for all n > 1 is proved by the ...

2. Find the mistake(s) in the following proofs:

n—1
(a) Prove that > 2% = 2" — 1 for all positive integers n.
k=0

n—1
Proof: Let P(n) denote the statement > 2¥ = 2" — 1 for all positive integers n.
k=0
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0
Basis Step: P(1) is true since Y 2F =1=2! — 1.
k=0

Inductive Step: Assume P(n) has been proved for all positive integers n.
n n—1
Then Y 28 = Y 2k 427" =27 — 1427 =2.2" — 1 = 27" — 1 which proves P(n + 1).

k=0 k=0
We have proved that P(n) — P(n + 1) for all positive integers n.

n—1
Thus, by the Principle of Mathematical Induction Y 2¥ =27 — 1 for all positive integers n. Wl
k=0

n 1 2
(b) Prove that > k*=134+234 ...+ n3 = ((n(nﬂ> for all positive integers n.

k=1 2
o - (lntn 1>)2_

M=

Proof: Let P(n) =
k

1

(1(1+1

1 2
Basis Step: We verify P(1) = Y. k¥ =13=1= < 5 )> , which is true.
k=1

n
Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n. That is, > k% =

) k=1
((n(n2+ 1)) .

Then 5 K = 3 K9+ (n+1)° = (W)2+(n+1)3 Gl M G )
k=1

= 2 4 4
(n+1)2 (n+2)° = (((n—&—l;(n—i—Q))

:7(712—&-471—1—4):M

1 which proves P(n + 1).

Thus, by the Principle of Mathematical Induction P(n) is true for all positive integers n. B

(c) Prove that > (4k + 3) = 2n? + 5n for all positive integers n.
k=1

Proof:

1
Basis Step: Since Y (4k+3)=7=2-12+5-1, the n = 1 case of the statement is true.
k=1

Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n.

n+1 n
Then Y (4k+3)= > (4k+3)+(n+1)=2n>+5n+(n+1)=2n2+6n+1=2(n+1)2+5(n+1)
k=1 k=1
which proves P(n + 1).

Thus, by the Principle of Mathematical Induction, we have proved that Y (4k + 3) = 2n? + 5n for all
k=1
positive integers n. B

3. Use induction to prove that > (6k — 1) = 3n? + 2n for all positive integers n.
k=1

n—1
4. Use induction to prove that 2 > 3% = 3" — 9 for all integers n > 3.
k=2

n—1
5. Use induction to prove that Y 4-5% = 5" — 25 for all integers n > 3.
k=2
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10.

Use induction to prove that 3" < n! for all integers n, n > 7.

n o1
Use induction to prove that ) — < % + 1 for all positive integers n.
i=11

Use induction to prove that 6 divides 9™ — 3™ for all integers n > 0.

Use induction to prove that 5 divides 427+! — 347*2 for all integers n > 0.

Use induction to prove that, if S is a set with n > 2 elements, then S has ) subsets containing exactly

n(n —
2

2 elements.
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Solution:

1. Complete the blanks in the following paragraph to prove the statement P(n) for all positive integers n.

To prove a mathematical statement P(n) for all positive integers n, first we verify P(1). This step is
called the Basis Step.

Then we verify that the conditional statement P(n) — P(n + 1) for all positive integers n.
This step is called the Inductive Step.

To prove the statement Vn(P(n) — P(n+1)), we assume P(n) has been proved for an arbitrary positive
integer n and prove P(n + 1).

After proving the previous step, the statement P(n) — P(n + 1) is justified by for all n by the rule of
inference called Univeral Generalization.

Finally, we make a conclusion that the statement P(n) for all n > 1 is proved by the Principle of Math-
ematical Induction.

The Principle of Mathematical Induction involves the justification of the Basis Step and the Inductive
Step. It is possible that P(1) is false and Vn > 1(P(n) — P(n + 1)) is true. In this case the Princi-
ple of Mathematical Induction can not be applied and we can not conclude that P(n) is true for all n > 1.

2. Find the mistake(s) in the following proofs:

(a)

n—1
Prove that > 2¥ =27 — 1 for all positive integers n.
k=0

n—1
Proof: Let P(n) denote the statement > 2¥ = 2" — 1 for all positive integers n.
k=0

0
Basis Step: P(1) is true, since Y 28F =1=2! - 1.
k=0

Inductive Step: Assume P(n) has been proved for all positive integers n.

n n—1

Then Y 28 = Y 2k 42" =27 — 1427 =2.27 — 1 =2"*! — 1 which proves P(n + 1).
k=0 k=0

We have proved that P(n) — P(n + 1) for all positive integers n.

n—1
Thus, by the principle of induction > 2¥ = 2" — 1 for all positive integers n. B
k=0

The author of this proof assumes the conclusion that the statement has been proved for ALL positive
integers in the inductive hypothesis. If P(n) has been proved, then we don’t have to prove anything.

We assume that the statement P(n) has been proved for some ARBITRARY positive integer n and
prove P(n +1). Then, P(n) — P(n+ 1) is true for all positive integers n by the rule of inference called
Universal Generalization studied earlier in the course.

2
n 1
Prove that > k*=13423+ ... +n3 = ((n(n;—)) for all positive integers n.
k=1
n 1 2
Proof: Let P(n) = > k? = <W;)) :
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(1(1+1)

1
Basis Step: We verify P(1) = S k3=13=1= < 3
k=1

2
> , which is true.

n
Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n. That is, Y. k% =

2 k=1
((n(n2+ )) .

Then nil E3 — i B+ (n+1)3 = <(”(”2+1))2 T (n+1)3 = n2(n4+ 1)? 4(n1—1)3 _
k=1 k=1
n 2 n 2 n n 2
= %(nz +4n+4) = {nt1)” Zl) (n+2)? = (W) , which proves P(n + 1).

Thus, by the Principle of Mathematical Induction P(n) is true for all positive integers n. H

The author of this proof abuses the P(n) notation to identify P(n) with an algebraic expression. P(n)
n 1 2 n (n 1 2
is neither > k® nor ((n(n—&—)) . P(n) represents the statement Y. k3 = <(n(n—|—)> for each

k=1 2 k=1 2
positive integer n.

1
The author makes the same mistake in the Basis Step. P(1) represents the true statement Y k% =

k=1
2
1(1+1
<((2+)> , and P(1) is not 1.
n
(c) Prove that > (4k + 3) = 2n? + 5n for all positive integers n.
k=1
Proof:
L
Basis Step: Since Y (4k+3) =7=2-12 451, the n = 1 case of the statement is true.
k=1
Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n.
n+1 n
Then Y (4k+3)= > (4k+3)+(n+1)=2n2+5n+(n+1)=2n>+6n+1=2(n+1)2+5n+1),

k=1 k=1
which proves P(n + 1).

Thus, by the Principle of Mathematical Induction, we have proved that > (4k + 3) = 2n? + 5n for all
k=1
positive integers n. W

In the Inductive Step the author of this proof added n+ 1 to the summation instead of the (n 4+ 1)-term,
4(n+1) + 3. After that, the algebraic manipulation is incorrect, and the author is bluffing to obtain the
correct formula for the n + 1 case of the statement.

Also, the author refers to P(n) in the inductive hypothesis and P(n+ 1) in the Inductive Step, and P(n)
was never defined at the beginning of the proof.

n
3. Use induction to prove that Y (6k — 1) = 3n? + 2n for all positive integers n.
k=1

Proof:

1
Basis Step:. For n = 1 the statement is true, since Y. (6k —1) = 5 and 3-1% + 2 -1 = 5 which implies
k=1

S (6k—1)=12+2-1.
k=1
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n
Inductive Step: Assume > (6k — 1) = 3n? 4 2n for an arbitrary positive integer n.
k=1

n+1
(We wish to prove that > (6k —1) =3(n+1)? +2(n+1).)
k=1

By the inductive hypothesis,

n+1 n

S (6k—1)= > (6k —1)+6(n+1)—1=3n+2n+6(n+1)—1=3n2+6n+3+2n+2 =3(n+1)>+2(n+1),
k=1 k=1

which proves the n + 1 case of the statement.

By the Principle of Mathematical Induction we have proved that > (6k — 1) = 3n? + 2n for all positive
k=1
integers n. M

n—1
4. Use induction to prove that 2 > 3% = 3" — 9 for all integers n > 3.
k=2

Proof:

2 2
Basis Step: The n = 3 case is true, since 2 > 3¥ = 18 and 3% — 9 = 18, and hence 2 3" 3% =33 —9.
k=2 k=2

n—1
Inductive Step: Assume 2 Y 3% = 3" — 9 for an arbitrary integer n > 3.
k=2

(We wish to prove that 2 > 38 =3n+1 —9))

k=2

By the inductive hypothesis,

n

n—1
2338 =25 384+2.3" =3" —9+42.3" = 3.3" —9 = 3"+ — 9, which proves the n+1 case of the statement.
k=2

k=2 o=
n—1
By the Principle of Mathematical Induction we have proved that 2 > 3% = 3" — 9 for all integers n > 3. W
k=2

n—1
5. Use induction to prove that Y 4 -5 = 5" — 25 for all integers n > 3.
k=2

n—1
Proof: Let P(n) represent the statement > 4 -5F = 5" — 25 where n is a positive integer.
k=2

2
Basis Step: P(3) is true, since > 4-5F =100 and 5% — 25 = 100, which proves P(3).
k=2

Inductive Step: Assume P(n) has been proved for an arbitrary integer n > 3.

(We wish to prove P(n + 1), that is, > 4-5F =57+ —25))

k=2
By the inductive hypothesis,
n n—1
S4.58 =345 +4.5" =57 — 25+ 4.5" = 57! — 25 which proves P(n + 1).
k=2 k=2

n—1
By the Principle of Mathematical Induction we conclude that > 4-5% =5 — 25 for all integers n > 3. W
k=2

6. Use induction to prove that 3™ < n! for all integers n, n > 7.
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Proof:

Basis Step: The n = 7 case, 37 < 7! is true, since 2187 < 5040.

Inductive Step: Assume 3" < n! has been proved for an arbitrary integer n > 7.
(We wish to prove that 3" < (n + 1)! is true.)

Using the inductive hypothesis and the inequality 3 < n 4 1 for n > 7, we obtain
3Tl =3".3 <n!-3<nl(n+1)=(n+1)! which proves that P(n + 1) is true.

By the Principle of Mathematical Induction we have proved that 3" < n! for all integers n > 7. B

no1
. Use induction to prove that Y - < g + 1 for all positive integers n.
i=1 1
"1l n . e
Proof: Let P(n) denote the statement » - < 5T 1 where n is a positive integer.
i=11
. . . 11 2
Basis Step: For n =1, P(1) is true, since E -=1< 3 +1=15.
=i

Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n.

n+l 1 1
(We wish to prove P(n + 1), that is, > - < nt

i=1 v

+ 1 is true.)

1 1
Using the inductive hypothesis and the inequality e < 3 for n > 1, we obtain
n

1 n 1 n 1 n+1

ntl] n o1
- <414+ —< -4+14+=-= 1, which P 1).
;z Litogg<gtlt g <gtl+g=—5 +1 whichproves Pln+1)
n
1
By the Principle of Mathematical Induction we have proved the statement > — g 1 for all positive
=1t

integers n. M

. Use induction to prove that 6 divides 9™ — 3" for all integers n > 0.
Proof:
Basis Step: The n = 0 case is true since 6 divides 9° — 3% = 0 by the definition of divisibility.

Inductive Step: Assume 6 divides 9" —3" for an arbitrary positive integer n. By the definition of divisibility,
9" — 3™ = 6k for some integer k.

(We wish to prove that 6 divides 9"+1 — 3n+l )
Using the inductive hypothesis and some algebraic manipulation,
gntl _3ntl —9.97 —3.3" = (6+3)-9"—3-3"=6-9"+3-(9"—-3")=6-9"+3-(6k) =6 (9" + 3k).

Since 9" + 3k is an integer, 9"+ — 37+ is divisible by 6.

Thus, the proof is completed by induction. H
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9.

10.

Use induction to prove that 5 divides 42"*! — 347+2 for all integers n > 0.
Proof: Let P(n) denote the statement that 5 divides 4271 — 34"*2 where n is an integer n > 0.
Basis Step: P(0) is true, since 5 divides 4! — 32 = —5 by the definition of divisibility.

Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n. By the definition of
divisibility, 427*! — 34"+2 = 5k for some integer k.

(We wish to prove P(n 4 1), that is 5 divides 42(»+1+1 _ g4(n+1)+2

Using the inductive hypothesis and some algebraic manipulation,

42(n+1)+1 _34(n+1)+2 _ 16_42n+1 —81 .34n+2 _ (81 —65) .42n+1 —81 _3477,+2 —81. (42n+1 o 34n+2) _65_42n+1 _
81 - (5k) — 65 - 4>t = 5. (81k — 13 - 42" 1) which proves P(n + 1), and hence the proof is complete by the
Principle of Mathematical Induction. H

n(n—1
Use induction to prove that, if S is a set with n > 2 elements, then S has % subsets containing exactly
2 elements.
«“ : TL(TL - 1) I
Proof: Let P(n) represent the statement “a set S with n > 2 elements has — subsets containing

exactly 2 elements.”

2(2 — 1)
2

Basis Step: P(2) is true, since a set with 2 elements has exactly
which is itself the set.

= 1 subset with exactly 2 elements,

Inductive Step: Assume P(n) has been proved for an arbitrary positive integer n > 2.

(n+1)n
2

(We wish to prove P(n+1), that is, “a set S with n+1 elements has subsets with exactly 2 elements.”)

Let  be an element of S. Then S = (S\ {z})U{z}. Since S\ {z} has n elements, according to the inductive

n(n

hypothesis, it contains ———= subsets with exactly 2 elements. These subsets have two elements and do not

contain the element x. The subsets of size 2 that contain x are in the form of {z, a} for some a € S\ {z}. There
n(n—1 n+1)n

are n such subsets of size 2. Thus, altogether the number of 2-element subsets is n + ( ) = (n+1)

2 2 ’
which proves P(n + 1).

By the Principle of Mathematical Induction we have shown that if S is a set with n > 2 elements, then S has
nin —1)

7 subsets containing exactly 2 elements. H
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