
Induction

Concepts:

• State the Principle of Mathematical Induction.

• Use “Basis Step” and “Inductive Step” structure in rigorous proofs.

• Write rigorous proofs by induction of summation formulas, divisibility statements, inequalities and equalities
between two mathematical expressions.

• Identify common mistakes in incorrect proofs.

Notes:

• Suppose P (n) represents a statement for every positive integer n. In your proof make sure P (n) represents
the statement and not an algebraic expression about the statement being made.

• For example: Let P (n) denote the statement
n−1∑
k=0

2 ·3k = 3n−1 for n ≥ 1. P (n) is neither
n∑

k=0

2 ·3k nor 3n−1.

P (n) is a proposition valued function (predicate), whose output value is either true or false for each input n.
In this particular case P (n) is true for all positive integer n which can be proved by induction.

• Declare P (n) at the beginning of the proof.

• Make sure that you always state the inductive hypothesis, and you always indicate the step in which you
recall the inductive hypothesis.

Problems:

1. Complete the blanks in the following paragraph to prove the statement P (n) for all positive integers n.

• To prove a mathematical statement P (n) for all positive integers n, first we verify P (1). This step is
called . . .

• Then we verify that the conditional statement . . . for all positive integers n.

This step is called . . .

• To prove the statement ∀n(P (n) → P (n + 1)), we assume . . . has been proved for an arbitrary positive
integer n and prove . . .

• After proving the previous step, the statement P (n) → P (n + 1) is justified by for all n by the rule of
inference called . . .

• Finally, we make a conclusion that the statement P (n) for all n ≥ 1 is proved by the . . .

2. Find the mistake(s) in the following proofs:

(a) Prove that
n−1∑
k=0

2k = 2n − 1 for all positive integers n.

Proof: Let P (n) denote the statement
n−1∑
k=0

2k = 2n − 1 for all positive integers n.
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Induction

Basis Step: P (1) is true since
0∑

k=0

2k = 1 = 21 − 1.

Inductive Step: Assume P (n) has been proved for all positive integers n.

Then
n∑

k=0

2k =
n−1∑
k=0

2k + 2n = 2n − 1 + 2n = 2 · 2n − 1 = 2n+1 − 1 which proves P (n+ 1).

We have proved that P (n) → P (n+ 1) for all positive integers n.

Thus, by the Principle of Mathematical Induction
n−1∑
k=0

2k = 2n − 1 for all positive integers n. ■

(b) Prove that
n∑

k=1

k3 = 13 + 23 + . . .+ n3 =

(
(n(n+ 1)

2

)2

for all positive integers n.

Proof: Let P (n) =
n∑

k=1

k3 =

(
(n(n+ 1)

2

)2

.

Basis Step: We verify P (1) =
1∑

k=1

k3 = 13 = 1 =

(
(1(1 + 1)

2

)2

, which is true.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n. That is,
n∑

k=1

k3 =(
(n(n+ 1)

2

)2

.

Then
n+1∑
k=1

k3 =
n∑

k=1

k3 + (n+ 1)3 =

(
(n(n+ 1)

2

)2

+ (n+ 1)3 =
n2(n+ 1)2

4
+

4(n+ 1)3

4
=

=
(n+ 1)2

4
(n2 + 4n+ 4) =

(n+ 1)2

4
(n+ 2)2 =

(
((n+ 1)(n+ 2)

2

)2

which proves P (n+ 1).

Thus, by the Principle of Mathematical Induction P (n) is true for all positive integers n. ■

(c) Prove that
n∑

k=1

(4k + 3) = 2n2 + 5n for all positive integers n.

Proof:

Basis Step: Since
1∑

k=1

(4k + 3) = 7 = 2 · 12 + 5 · 1, the n = 1 case of the statement is true.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n.

Then
n+1∑
k=1

(4k + 3) =
n∑

k=1

(4k + 3) + (n+ 1) = 2n2 + 5n+ (n+ 1) = 2n2 + 6n+ 1 = 2(n+ 1)2 + 5(n+ 1)

which proves P (n+ 1).

Thus, by the Principle of Mathematical Induction, we have proved that
n∑

k=1

(4k + 3) = 2n2 + 5n for all

positive integers n. ■

3. Use induction to prove that
n∑

k=1

(6k − 1) = 3n2 + 2n for all positive integers n.

4. Use induction to prove that 2
n−1∑
k=2

3k = 3n − 9 for all integers n ≥ 3.

5. Use induction to prove that
n−1∑
k=2

4 · 5k = 5n − 25 for all integers n ≥ 3.
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Induction

6. Use induction to prove that 3n < n! for all integers n, n ≥ 7.

7. Use induction to prove that
n∑

i=1

1

i
<

n

2
+ 1 for all positive integers n.

8. Use induction to prove that 6 divides 9n − 3n for all integers n ≥ 0.

9. Use induction to prove that 5 divides 42n+1 − 34n+2 for all integers n ≥ 0.

10. Use induction to prove that, if S is a set with n ≥ 2 elements, then S has
n(n− 1)

2
subsets containing exactly

2 elements.
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Solution:

1. Complete the blanks in the following paragraph to prove the statement P (n) for all positive integers n.

• To prove a mathematical statement P (n) for all positive integers n, first we verify P (1). This step is
called the Basis Step.

• Then we verify that the conditional statement P (n) → P (n+ 1) for all positive integers n.

This step is called the Inductive Step.

• To prove the statement ∀n(P (n) → P (n+1)), we assume P (n) has been proved for an arbitrary positive
integer n and prove P (n+ 1).

• After proving the previous step, the statement P (n) → P (n + 1) is justified by for all n by the rule of
inference called Univeral Generalization.

• Finally, we make a conclusion that the statement P (n) for all n ≥ 1 is proved by the Principle of Math-
ematical Induction.

The Principle of Mathematical Induction involves the justification of the Basis Step and the Inductive
Step. It is possible that P (1) is false and ∀n ≥ 1(P (n) → P (n + 1)) is true. In this case the Princi-
ple of Mathematical Induction can not be applied and we can not conclude that P (n) is true for all n ≥ 1.

2. Find the mistake(s) in the following proofs:

(a) Prove that
n−1∑
k=0

2k = 2n − 1 for all positive integers n.

Proof: Let P (n) denote the statement
n−1∑
k=0

2k = 2n − 1 for all positive integers n.

Basis Step: P (1) is true, since
0∑

k=0

2k = 1 = 21 − 1.

Inductive Step: Assume P (n) has been proved for all positive integers n.

Then
n∑

k=0

2k =
n−1∑
k=0

2k + 2n = 2n − 1 + 2n = 2 · 2n − 1 = 2n+1 − 1 which proves P (n+ 1).

We have proved that P (n) → P (n+ 1) for all positive integers n.

Thus, by the principle of induction
n−1∑
k=0

2k = 2n − 1 for all positive integers n. ■

The author of this proof assumes the conclusion that the statement has been proved for ALL positive
integers in the inductive hypothesis. If P (n) has been proved, then we don’t have to prove anything.

We assume that the statement P (n) has been proved for some ARBITRARY positive integer n and
prove P (n+ 1). Then, P (n) → P (n+ 1) is true for all positive integers n by the rule of inference called
Universal Generalization studied earlier in the course.

(b) Prove that
n∑

k=1

k3 = 13 + 23 + . . .+ n3 =

(
(n(n+ 1)

2

)2

for all positive integers n.

Proof: Let P (n) =
n∑

k=1

k3 =

(
(n(n+ 1)

2

)2

.
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Induction

Basis Step: We verify P (1) =
1∑

k=1

k3 = 13 = 1 =

(
(1(1 + 1)

2

)2

, which is true.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n. That is,
n∑

k=1

k3 =(
(n(n+ 1)

2

)2

.

Then
n+1∑
k=1

k3 =
n∑

k=1

k3 + (n+ 1)3 =

(
(n(n+ 1)

2

)2

+ (n+ 1)3 =
n2(n+ 1)2

4
+

4(n+ 1)3

4
=

=
(n+ 1)2

4
(n2 + 4n+ 4) =

(n+ 1)2

4
(n+ 2)2 =

(
((n+ 1)(n+ 2)

2

)2

, which proves P (n+ 1).

Thus, by the Principle of Mathematical Induction P (n) is true for all positive integers n. ■

The author of this proof abuses the P (n) notation to identify P (n) with an algebraic expression. P (n)

is neither
n∑

k=1

k3 nor

(
(n(n+ 1)

2

)2

. P (n) represents the statement
n∑

k=1

k3 =

(
(n(n+ 1)

2

)2

for each

positive integer n.

The author makes the same mistake in the Basis Step. P (1) represents the true statement
1∑

k=1

k3 =(
(1(1 + 1)

2

)2

, and P (1) is not 1.

(c) Prove that
n∑

k=1

(4k + 3) = 2n2 + 5n for all positive integers n.

Proof:

Basis Step: Since
1∑

k=1

(4k + 3) = 7 = 2 · 12 + 5 · 1, the n = 1 case of the statement is true.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n.

Then
n+1∑
k=1

(4k + 3) =
n∑

k=1

(4k + 3) + (n+ 1) = 2n2 + 5n+ (n+ 1) = 2n2 + 6n+ 1 = 2(n+ 1)2 + 5(n+ 1),

which proves P (n+ 1).

Thus, by the Principle of Mathematical Induction, we have proved that
n∑

k=1

(4k + 3) = 2n2 + 5n for all

positive integers n. ■

In the Inductive Step the author of this proof added n+1 to the summation instead of the (n+1)-term,
4(n+1)+ 3. After that, the algebraic manipulation is incorrect, and the author is bluffing to obtain the
correct formula for the n+ 1 case of the statement.

Also, the author refers to P (n) in the inductive hypothesis and P (n+1) in the Inductive Step, and P (n)
was never defined at the beginning of the proof.

3. Use induction to prove that
n∑

k=1

(6k − 1) = 3n2 + 2n for all positive integers n.

Proof:

Basis Step:. For n = 1 the statement is true, since
1∑

k=1

(6k − 1) = 5 and 3 · 12 + 2 · 1 = 5 which implies

1∑
k=1

(6k − 1) = 12 + 2 · 1.
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Inductive Step: Assume
n∑

k=1

(6k − 1) = 3n2 + 2n for an arbitrary positive integer n.

(We wish to prove that
n+1∑
k=1

(6k − 1) = 3(n+ 1)2 + 2(n+ 1).)

By the inductive hypothesis,
n+1∑
k=1

(6k−1) =
n∑

k=1

(6k − 1)+6(n+1)−1 = 3n2 + 2n+6(n+1)−1 = 3n2+6n+3+2n+2 = 3(n+1)2+2(n+1),

which proves the n+ 1 case of the statement.

By the Principle of Mathematical Induction we have proved that
n∑

k=1

(6k − 1) = 3n2 + 2n for all positive

integers n. ■

4. Use induction to prove that 2
n−1∑
k=2

3k = 3n − 9 for all integers n ≥ 3.

Proof:

Basis Step: The n = 3 case is true, since 2
2∑

k=2

3k = 18 and 33 − 9 = 18, and hence 2
2∑

k=2

3k = 33 − 9.

Inductive Step: Assume 2
n−1∑
k=2

3k = 3n − 9 for an arbitrary integer n ≥ 3.

(We wish to prove that 2
n∑

k=2

3k = 3n+1 − 9.)

By the inductive hypothesis,

2
n∑

k=2

3k = 2
n−1∑
k=2

3k+2 ·3n = 3n − 9+2 ·3n = 3 ·3n−9 = 3n+1−9, which proves the n+1 case of the statement.

By the Principle of Mathematical Induction we have proved that 2
n−1∑
k=2

3k = 3n − 9 for all integers n ≥ 3. ■

5. Use induction to prove that
n−1∑
k=2

4 · 5k = 5n − 25 for all integers n ≥ 3.

Proof: Let P (n) represent the statement
n−1∑
k=2

4 · 5k = 5n − 25 where n is a positive integer.

Basis Step: P (3) is true, since
2∑

k=2

4 · 5k = 100 and 53 − 25 = 100, which proves P (3).

Inductive Step: Assume P (n) has been proved for an arbitrary integer n ≥ 3.

(We wish to prove P (n+ 1), that is,
n∑

k=2

4 · 5k = 5n+1 − 25.)

By the inductive hypothesis,
n∑

k=2

4 · 5k =
n−1∑
k=2

4 · 5k + 4 · 5n = 5n − 25 + 4 · 5n = 5n+1 − 25, which proves P (n+ 1).

By the Principle of Mathematical Induction we conclude that
n−1∑
k=2

4 · 5k = 5n − 25 for all integers n ≥ 3. ■

6. Use induction to prove that 3n < n! for all integers n, n ≥ 7.
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Proof:

Basis Step: The n = 7 case, 37 < 7! is true, since 2187 < 5040.

Inductive Step: Assume 3n < n! has been proved for an arbitrary integer n ≥ 7.

(We wish to prove that 3n+1 < (n+ 1)! is true.)

Using the inductive hypothesis and the inequality 3 < n+ 1 for n ≥ 7, we obtain

3n+1 = 3n · 3 < n! · 3 < n!(n+ 1) = (n+ 1)! which proves that P (n+ 1) is true.

By the Principle of Mathematical Induction we have proved that 3n < n! for all integers n ≥ 7. ■

7. Use induction to prove that
n∑

i=1

1

i
<

n

2
+ 1 for all positive integers n.

Proof: Let P (n) denote the statement
n∑

i=1

1

i
<

n

2
+ 1 where n is a positive integer.

Basis Step: For n = 1, P (1) is true, since
1∑

i=1

1

i
= 1 <

2

2
+ 1 = 1.5.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n.

(We wish to prove P (n+ 1), that is,
n+1∑
i=1

1

i
<

n+ 1

2
+ 1 is true.)

Using the inductive hypothesis and the inequality
1

n+ 1
≤ 1

2
for n ≥ 1, we obtain

n+1∑
i=1

1

i
=

n∑
i=1

1

i
+

1

n+ 1
<

n

2
+ 1 +

1

n+ 1
<

n

2
+ 1 +

1

2
=

n+ 1

2
+ 1, which proves P (n+ 1).

By the Principle of Mathematical Induction we have proved the statement
n∑

i=1

1

i
<

n

2
+ 1 for all positive

integers n. ■

8. Use induction to prove that 6 divides 9n − 3n for all integers n ≥ 0.

Proof:

Basis Step: The n = 0 case is true since 6 divides 90 − 30 = 0 by the definition of divisibility.

Inductive Step: Assume 6 divides 9n−3n for an arbitrary positive integer n. By the definition of divisibility,
9n − 3n = 6k for some integer k.

(We wish to prove that 6 divides 9n+1 − 3n+1 .)

Using the inductive hypothesis and some algebraic manipulation,

9n+1 − 3n+1 = 9 · 9n − 3 · 3n = (6 + 3) · 9n − 3 · 3n = 6 · 9n + 3 · (9n − 3n) = 6 · 9n + 3 · (6k) = 6 · (9n + 3k).
Since 9n + 3k is an integer, 9n+1 − 3n+1 is divisible by 6.

Thus, the proof is completed by induction. ■
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9. Use induction to prove that 5 divides 42n+1 − 34n+2 for all integers n ≥ 0.

Proof: Let P (n) denote the statement that 5 divides 42n+1 − 34n+2 where n is an integer n ≥ 0.

Basis Step: P (0) is true, since 5 divides 41 − 32 = −5 by the definition of divisibility.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n. By the definition of
divisibility, 42n+1 − 34n+2 = 5k for some integer k.

(We wish to prove P (n+ 1), that is 5 divides 42(n+1)+1 − 34(n+1)+2 .)

Using the inductive hypothesis and some algebraic manipulation,

42(n+1)+1−34(n+1)+2 = 16·42n+1−81·34n+2 = (81−65)·42n+1−81·34n+2 = 81·(42n+1 − 34n+2)−65·42n+1 =
81 · (5k)− 65 · 42n+1 = 5 · (81k − 13 · 42n+1), which proves P (n+ 1), and hence the proof is complete by the
Principle of Mathematical Induction. ■

10. Use induction to prove that, if S is a set with n ≥ 2 elements, then S has
n(n− 1)

2
subsets containing exactly

2 elements.

Proof: Let P (n) represent the statement “a set S with n ≥ 2 elements has
n(n− 1)

2
subsets containing

exactly 2 elements.”

Basis Step: P (2) is true, since a set with 2 elements has exactly
2(2− 1)

2
= 1 subset with exactly 2 elements,

which is itself the set.

Inductive Step: Assume P (n) has been proved for an arbitrary positive integer n ≥ 2.

(We wish to prove P (n+1), that is, “a set S with n+1 elements has
(n+ 1)n

2
subsets with exactly 2 elements.”)

Let x be an element of S. Then S = (S \ {x})∪{x}. Since S \ {x} has n elements, according to the inductive

hypothesis, it contains
n(n− 1)

2
subsets with exactly 2 elements. These subsets have two elements and do not

contain the element x. The subsets of size 2 that contain x are in the form of {x, a} for some a ∈ S\{x}. There

are n such subsets of size 2. Thus, altogether the number of 2-element subsets is n +
n(n− 1)

2
=

(n+ 1)n

2
,

which proves P (n+ 1).

By the Principle of Mathematical Induction we have shown that if S is a set with n ≥ 2 elements, then S has
n(n− 1)

2
subsets containing exactly 2 elements. ■
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