Concepts:

- Define the concepts "a divides b" or "b is divisible by a" or "b is a multiple of a."
- Prove simple statements involving divisibility.
- Define and perform the Division Algorithm.
- Identify the proper range of a remainder in the division algorithm.
- Evaluate "div" and "mod" binary operators on integers.
- Define and evaluate " $a \mod m$."
- Define the concept "a congruent $b \pmod{m}$."
- Perform modular arithmetic on expressions involving additions and multiplications.
- Perform fast modular exponentiation to evaluate $a^{2^k} \mod m$ expressions.

Problems:

- 1. Fill in the blanks in the statements below:
 - (a) Let a and d are integers with $d \neq 0$. We say d divides a if ...
 - (b) Let a be an integer and d be a positive integer. The Division Algorithm states that ...
 - (c) Let a be an integer and m be a positive integer. $a \mod m$ represents ...
 - (d) Let a be an integer and m be a positive integer. a div m represents ...
 - (e) Let a and b be integers and m be an integer greater than 1. Then $a \equiv b \mod m$ means that ...
 - (f) Let a and b be integers and m be an integer greater than 1. Then $(a + b) \mod m = \dots$
 - (g) Let a and b be integers and m be an integer greater than 1. Then $(a \cdot b) \mod m = \dots$
 - (h) Let a, m and k be positive integers such that $m \ge 2$. What computationally efficient procedure would you apply to calculate $a^{2^k} \mod m$?
- 2. Check whether the following statements are true or false.
 - (a) Assume $a \neq 0$ and b are integers. The notation a|b means "a divides b." That is, there is an integer q such that b = qa.
 - (b) The following statements are equivalent:

"a divides b", "b is a multiple of a", "a is a factor of b" and "a is a divisor of b."

3. Check whether the following statements are true or false. If you think the statement is true, then give a short proof. If you think the statement is false, then give a counter example.

- (a) Assume $a \neq 0$ and b are integers. If a|b, then $a|b^2$.
- (b) Assume $a \neq 0$ and b are integers. If $a|b^2$, then a|b.
- (c) Assume $a \neq 0$, b and c are integers. If a|b and b|c, then a|c.
- 4. Find $(234 \mod 43 + 213 \mod 43) \mod 43$.
- 5. Find two different integers a and b, such that $a \mod 47 = 23$, $b \mod 47 = 23$, and both a and b are negative.
- 6. Use modular arithmetic to find $(12345678 \cdot 9056348992391 + 3^{123456754}) \mod 4$. Show your work. Don't multiply 12345678 and 9056348992391 together.

Hint: In your calculation apply the theorems below:

- $(a+b) \mod m = (a \mod m + b \mod m) \mod m$
- $(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$
- $a^n \mod m = ((a \mod m)^n) \mod m$
- 7. Find the smallest positive integer a such that $a \mod 3 = 2$ and $a \mod 5 = 3$.
- 8. Without using a calculator find $5^8 \mod 7$ in two ways:
 - (a) First multiply two 5's together and evaluate the product mod 7. Multiply this value by 5 and evaluate it mod 7. Keep repeating this procedure until you receive 5⁸ mod 7. How many multiplications did you use in this procedure?
 - (b) Use fast modular exponentiation. How many squaring steps did you use in this algorithm?
- 9. (a) Find the smallest positive integer n such that $3^n \mod 11 = 1$.
 - (b) Use the previous result, modular arithmetic and laws of exponents to find $3^{236} \mod 11$.
 - (c) Find $3^n \mod 11$ for the following values of n:
 - when $n \mod 5 = 0$
 - when $n \mod 5 = 1$
 - when $n \mod 5 = 2$
 - when $n \mod 5 = 3$
 - when $n \mod 5 = 4$
- 10. Use fast modular exponentiation to calculate $2^{1024} \mod 13$. How many "squaring steps" were performed in the algorithm?
- 11. Prove that a positive integer n is divisible by 3 if and only if the sum of the digits of n (in decimal representation) is divisible by 3.

For example: you can test if 234588 is divisible by 3 by adding its digits. Since 2 + 3 + 4 + 5 + 8 + 8 = 30 is divisible 3, 234588 is also divisible by 3.

(Hint: Let $n = a_d 10^d + a_{d-1} 10^{d-1} + a_{d-2} 10^{d-2} + \dots + a_1 10 + a_0$ be n's decimal expansion. Use modular arithmetic to find n mod 3 in terms of the sum of the digits $a_i, i = 0, 1, 2, \dots, d$).

Solutions:

- 1. Fill in the blanks in the statements below:
 - (a) Let a and d are integers with $d \neq 0$. We say d divides a if there exists an integer k such that $a = k \cdot d$.
 - (b) Let a be an integer and d be a positive integer. The Division Algorithm states that there exist unique integers q and r such that a = qd + r where $0 \le r < d$. The integer a is called the dividend, d is called the divisor, q is called the quotient and r is called the remainder.
 - (c) Let a be an integer and m be a positive integer. $a \mod m$ represents r the remainder in the Division Algorithm when a is divided by m.
 - (d) Let a be an integer and m be a positive integer. Then a div m represents q the quotient in the Division Algorithm when a is divided by m. In fact $q = \left\lfloor \frac{a}{m} \right\rfloor$.
 - (e) Let a and b be any two integers and m be an integer greater than 1. Then $a \equiv b \pmod{m}$ means that m divides a b. Equivalently, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.
 - (f) Let a and b be any two integers and m be an integer greater than 1. Then $(a+b) \mod m = (a \mod m + b \mod m) \mod m$
 - (g) Let a and b be integers and m be an integer greater than 1. Then $(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$
 - (h) Let a, m and k be positive integers such that $m \ge 2$. What procedure would you apply to calculate $a^{2^k} \mod m$?

We would use fast modular exponentiation to calculate $a^{2^k} \mod m$. The successive squaring of a will result in a^{2^k} in k steps. After each squaring we reduce the answer modulo m, and in the next squaring step we use this reduced value.

- 2. Check whether the following statements are true or false.
 - (a) Assume $a \neq 0$ and b are integers. The notation a|b means "a divides b." That is, there is an integer q such that b = qa.

True. Note that the notation a|b, means that a divides b. That is, $\frac{b}{a}$ is an integer.

(b) The following statements are equivalent:

"a divides b", "b is a multiple of a", "a is a factor of b" and "a is a divisor of b."

True. All of these mean that $\frac{b}{a}$ is an integer.

3. Check whether the following statements are true or false. If you think the statement is true, then give a short proof. If you think the statement is false, then give a counter example.

(a) Assume $a \neq 0$ and b are integers. If a|b, then $a|b^2$.

True. Assume $a \neq 0$ and b are integers such that a divides b. By the definition of divisibility, $b = k \cdot a$ for some integer k. Multiplying both sides of the equation by b, we obtain $b^2 = (kb) \cdot a$. Since kb is an integer, a divides b by the definition of divisibility.

(b) Assume $a \neq 0$ and b are integers. If $a|b^2$, then a|b.

False. Let a = 12 and b = 6. Then a divides b^2 but a does not divide b.

(c) Assume $a \neq 0$, $b \neq 0$, and c are integers. If a|b and b|c, then a|c.

True. Assume $a \neq 0$, $b \neq 0$, and c are integers such that a divides b and b divides c. By the definition of divisibility, $b = k \cdot a$ and $c = \ell \cdot b$ for some integers k, ℓ . Substituting $b = k \cdot a$ into $c = \ell \cdot b$, we obtain $c = (\ell k) \cdot a$. Since ℓk is an integer, a divides c by the definition of divisibility.

4. Find $(234 \mod 43 + 213 \mod 43) \mod 43$.

 $(234 \mod 43 + 213 \mod 43) \mod 43 = (19 + 41) \mod 43 = 17.$

5. Find two different integers a and b, such that a mod 47 = 23 and b mod 47 = 23 and both a and b are negative.

Any integer a which gives a remainder 23 when it is divided by 47, can be written in the form of n = 47k+23 for some integer k. To obtain two negative integers satisfying the required property, we can choose k = -1, -2. Thus, -24, -71 are two negative numbers such that $-24 \mod 47 = 23$ and $-71 \mod 47 = 23$.

6. Use modular arithmetic to find $(12345678 \cdot 9056348992391 + 3^{123456754}) \mod 4$. Show your work. Don't multiply 12345678 and 9056348992391 together.

Hint: In your calculation apply the theorems below:

- $(a+b) \mod m = (a \mod m + b \mod m) \mod m$
- $(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$
- $a^n \mod m = ((a \mod m)^n) \mod m$

Since $3^{123456754} \mod 4 = (3^2)^{61728377} \mod 4 = 9^{61728377} \mod 4 = ((9 \mod 4)^{61728377}) \mod 4 = 1$,

 $(12345678 \cdot 9056348992391 + 3^{123456754}) \mod 4 = ((12345678 \mod 4) \cdot (9056348992391 \mod 4) + (12345678 di 4) + (1236678 di 4) + (123678 di 4) +$

 $3^{123456754} \mod 4 \mod 4 = ((2 \cdot 3) + 1) \mod 4 = 3.$

7. Find the smallest positive integer a such that $a \mod 3 = 2$ and $a \mod 5 = 3$.

Any integer a with the property that $a \mod 3 = 2$ can be written in the form a = 3k + 2 for some integer k. We need to find the smallest integer k such that a = 3k + 2 is positive and $a \mod 5 = 3$. The smallest such k is k = 2, which gives a = 8.

8. Without using a calculator find $5^8 \mod 7$.

(a) First multiply two 5's together and evaluate the product mod 7. Multiply this value by 5 and evaluate it mod 7. Keep repeating this procedure until you receive 5⁸ mod 7. How many multiplications did you use in this procedure?

We will multiply two factors at a time and evaluate it mod 7. $(\underbrace{5 \cdot 5}_{=4} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5) \mod 7 = (\underbrace{4 \cdot 5}_{=6} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5) \mod 7 = (\underbrace{6 \cdot 5}_{=2} \cdot 5 \cdot 5 \cdot 5) \mod 7 = (\underbrace{3 \cdot 5}_{=3} \cdot 5 \cdot 5) \mod 7 = (\underbrace{3 \cdot 5}_{=1} \cdot 5 \cdot 5) \mod 7 = 4.$ 7 multiplications were use in the procedure.

(b) Use fast modular exponentiation. How many squaring steps did you use in this algorithm?

We perform the algorithm.

 $5^{2^0} \mod 7 = 5^1 \mod 7 = 5$ $5^{2^1} \mod 7 = 5^2 \mod 7 = 4$ $5^{2^2} \mod 7 = 4^2 \mod 7 = 2$ $5^{2^3} \mod 7 = 2^2 \mod 7 = 4$

Thus, $5^{2^3} \mod 7 = 4$. The algorithm used 3 squaring steps.

9. (a) Find the smallest positive integer n such that $3^n \mod 11 = 1$.

We use a trial method.

 $3^1 \mod 11 = 3, 3^2 \mod 11 = 9, 3^3 \mod 11 = 5, 3^4 \mod 11 = 4, 3^5 \mod 11 = 1$. Thus, n = 5 is the smallest positive integer n for which $3^n \mod 11 = 1$. Now, the remainders will repeat in a cycle 3, 9, 5, 4, 1.

(b) Use the previous result, modular arithmetic and laws of exponents to find $3^{236} \mod 11$.

Since $236 = 5 \cdot 47 + 1$, $3^{236} \mod 11 = 3^{5 \cdot 47 + 1} \mod 11 = (3^{5 \cdot 47} \cdot 3^1) \mod 11 = (((3^5 \mod 11)^{47} \mod 11) \cdot (3 \mod 11)) \mod 11 = (1 \cdot 3) \mod 11 = 3$. Note that we divided the exponent 236 by 5, because 5 is the smallest smallest positive integer n such that $3^n \mod 11 = 1$.

- (c) Find $3^n \mod 11$ for the following values of n:
 - when $n \mod 5 = 0$
 - when $n \mod 5 = 1$
 - when $n \mod 5 = 2$
 - when $n \mod 5 = 3$
 - when $n \mod 5 = 4$

By the Division Algorithm any exponent n can be written in the form of n = 5k + r where k and r are non-negative integers such that $0 \le r < 5$. Since $3^5 \mod 11 = 1$, $3^n \mod 11 = 3^{5k+r} \mod 11 = ((3^5 \mod 11)^k \cdot (3^r \mod 11)) \mod 11 = 3^r \mod 11$. Thus,

$$3^{n} \mod 11 = \begin{cases} 3^{0} \mod 11 = 1 \text{ when } n \mod 5 = 0\\ 3^{1} \mod 11 = 3 \text{ when } n \mod 5 = 1\\ 3^{2} \mod 11 = 9 \text{ when } n \mod 5 = 2\\ 3^{3} \mod 11 = 5 \text{ when } n \mod 5 = 3\\ 3^{4} \mod 11 = 4 \text{ when } n \mod 5 = 4 \end{cases}$$

10. Use fast modular exponentiation to calculate $3^{1024} \mod 7$. How many "squaring steps" were performed in this algorithm?

Since $1024 = 2^{10}$, successive squaring of the base 3 will result in 3^{1024} in 10 squaring steps. Now we perform the algorithm.

 $3^{2^0} \mod 7 = 3^1 \mod 7 = 3$ $3^{2^1} \mod 7 = 3^2 \mod 7 = 2$

In the second step, we obtain the result by squaring 3 and not calculating $3^{2^1} \mod 7$.

$$3^{2^2} \mod 7 = 2^2 \mod 7 = 4$$

In the third step, we obtain the result by squaring 2 and not calculating $3^{2^2} \mod 7$.

$$3^{2^3} \mod 7 = 4^2 \mod 7 = 2$$

In the fourth step, we obtain the result by squaring 4 and not calculating $3^{2^3} \mod 7$. Thus, the remainders 2, 4 will be repeating in a two-cycle.

$$3^{2^{k}} \mod 11 = \begin{cases} 3 \text{ when } k = 0\\ 2 \text{ when } n \text{ odd}\\ 4 \text{ when } n \text{ even} \end{cases}$$

The exponent is 10 is even, so

$$3^{2^{10}} \mod 7 = 4.$$

11. Prove that a positive integer n is divisible by 3 if and only if the sum of the digits of n (in decimal representation) is divisible by 3.

For example: you can test if 234588 is divisible by 3 by adding its digits. Since 2 + 3 + 4 + 5 + 8 + 8 = 30 is divisible 3, 234588 is also divisible by 3.

(Hint: Let $n = a_d 10^d + a_{d-1} 10^{d-1} + a_{d-2} 10^{d-2} + \dots + a_1 10 + a_0$ be n's decimal expansion. Use modular arithmetic to find n mod 3 in terms of the sum of the digits $a_i, i = 0, 1, 2, \dots, d$).

Proof: Let $n = a_d 10^d + a_{d-1} 10^{d-1} + a_{d-2} 10^{d-2} + \dots + a_1 10 + a_0$ be *n*'s decimal expansion with d + 1 digits. Since 10 mod 3 = 1, $n \mod 3 = (a_d 10^d + a_{d-1} 10^{d-1} + a_{d-2} 10^{d-2} + \dots + a_1 10 + a_0) \mod 3 = (a_d + a_{d-1} + a_{d-2} + \dots + a_1 + a_0) \mod 3$.

Consequently, $n \mod 3 = 0$ (i.e., n is divisible by 3) if and only if $(a_d + a_{d-1} + a_{d-2} + \ldots a_1 + a_0) \mod 3 = 0$ (i.e., the sum of the digits is divisible by 3).