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Since the nineteenth century, the theory of surfaces has been extensively studied from the
topological as well as the differential geometric point of view. Riemann first studied complex
structures on closed compact surfaces (Riemann surfaces) and Poincaré-Koebe [1, 2] classified
simply connected Riemann surfaces in 1907.

Closed curves play important roles in the study of surfaces. They were initially studied
in the context of complex analysis. Dehn [3, 4] studied these objects from a topological and
combinatorial perspective. He expressed closed curves as finite words in the generators of the
fundamental group and introduced the word problem (that is the characterization of the identity
element of the fundamental group), the conjugacy problem (that is how to determine conjugate
elements), etc.

For a long time, mathematicians were interested in simple closed curves. Starting from the
work of Dehn, many important results were discovered, for example, by Fenchel-Nielsen [5],
and then especially by Thurston [6] from the 1980s. There have been many remarkable results
about simple closed curves, for example, the work of McShane [7, 8] and Mirzakhani [9, 10, 11].
Recently, there has been an interest in understanding to what extent results about simple curves
can be reproduced for non-simple curves for example, in the work of Erlandsson-Souto [12, 13].

This course is an introduction to surfaces and curves on surfaces. Topics include:

• Finite type surfaces and hyperbolic structures

• Closed curves and geodesics on hyperbolic surfaces



• Intersections of closed curves and the bigon criterion

• Mapping class groups

• Dehn twists

Prerequisites: The prerequisites are: Advanced Calculus (MAT 371 or equivalent) and
Linear Algebra (MAT 342 or equivalent). Some familiarity with groups and topology (connect-
edness, compactness, quotient spaces) is preferable but not required. References will be given
to learn the minimal notions of these topics as needed.

Course work: There will be no homework or exams in this class, rather students will write
a final project on the topic of their choice, related to any of the topics discussed in class.

References for the class:

• A.F. Beardon; The Geometry of Discrete Groups, Graduate Texts in Mathematics Vol.
91, Springer, 1983.

• Peter Buser, Geometry and spectra of compact Riemann surfaces, Progr. Math., 106,
Birkhäuser Boston, Boston, MA, 1992.

• Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Prince-
ton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.
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