Answers: MAT 210 Exam 2 Review Questions

Chain Rule (section 11.4)

1.

a) $2\left(3 x^{2}+2 x-8\right)^{4}(6 x+2)$
b) $\frac{1}{2}\left(x^{3}-50 x\right)^{-\frac{1}{2}} \cdot\left(3 x^{2}-50\right)=\frac{3 x^{2}-50}{2 \sqrt{x^{3}-50 x}}$
c) $\frac{4}{3}(6 x+1)^{1 / 3} \cdot 6=8(6 x+1)^{\frac{1}{3}}=8 \sqrt[3]{6 x+1}$
d) $25(-4)\left(x^{2}+x+2\right)^{-5} \cdot(2 x+1)=-100(2 x+1)\left(x^{2}+x+2\right)^{-5}=-\frac{100(2 x+1)}{\left(x^{2}+x+2\right)^{5}}$

Derivative of Logarithmic and Exponential Functions (section 11.5)

1.

(a) $9 \cdot \frac{1}{2 x} \cdot 2=\frac{9}{x}$
(b) $\frac{15 x^{2}+2 x}{5 x^{3}+x^{2}+4}$
(c) $\frac{3 x^{2}-8}{x^{3}-8 x}$
(d) $1-\left(1 \cdot \ln x+x \cdot \frac{1}{x}\right)=-\ln x$
(e) $4 e^{x^{5}-3 x} \cdot\left(5 x^{4}-3\right)$
(f) $(2 x-2) e^{2 x+3}+\left(x^{2}-2 x\right) e^{2 x+3} \cdot 2=\left(2 x^{2}-2 x-2\right) e^{2 x+3}$
(g) $\left(-5 x^{-2}\right) e^{5 / x}$
(h) $-16 e^{-2 x}$
(i) $5\left(9 x^{2}+2\right) e^{3 x^{3}+2 x}$

Implicit Differentiation (section 11.6)

1.

(a) $\frac{d y}{d x}=\frac{3 x^{2}}{3 y^{2}-1}$
(b) $\frac{d y}{d x}=\frac{15-12 x y}{6 x^{2}-2 y}$
(c) $\frac{d y}{d x}=\frac{e^{x}-e^{y}}{x e^{y}}$

Maxima and Minima (section 12.1)

1.

(a) $-3,0,3$
(b) $-1,1$
(c) $-3,3$
(d) $-1,0,1$
(e) $(-3,-1)$ and $(0,1)$
(f) $(-1,0)$ and $(1,3)$
2.
(a) $-2,0,2$
(b) $-2 ; 2$
3. Critical point $x=2$; f has a relative minimum at $x=2$, which is equal to $f(2)=2-2 \ln 2$.
4.
(a) Critical points: $x=-1,1$.
(b) Abs $\operatorname{Max}=f(-1)=f(2)=28 ; \operatorname{Abs} \operatorname{Min}=f(-3)=-132$.
5.
(a) Critical points: $(-2,-32),(0,0)$
(b) Endpoints points: $(-3,27),(0.5,-2.3125)$
(c) Abs $\operatorname{Max}=f(-3)=27 ;$ Abs $\operatorname{Min}=f(-2)=-32 ;$ Rel $\operatorname{Max}=f(0)=0$ and $f(-3)=27$;

Rel Min $=f(0.5)=-2.3125$ and $f(-2)=-32$.
6.
(a) Critical point: $x=2$
(b) Abs Max $=g(5)=3^{2 / 3} ; \operatorname{Abs} \operatorname{Min}=g(2)=0$.
7.
(a) Critical points: $x=1,3$.
(b) Increasing on $(-\infty, 1) \cup(3, \infty)$; decreasing on $(1,3)$.
(c) $\operatorname{Abs} \operatorname{Max}=k(5)=60 ; \operatorname{Abs} \operatorname{Min}=k(-1)=-84 ; \operatorname{Rel} \operatorname{Max}$ are $k(1)=-4$ and $k(5)=60$;

Rel Min are $k(3)=-20$ and $k(-1)=-84$.
8.
(a) Critical points: $x=0$.
(b) Increasing on (0,3); decreasing on $(-2,0)$.
(c) Abs $\operatorname{Max}=h(3)=e^{3}-3$; Abs $\operatorname{Min}=h(0)=1$; Rel Max are $h(-2)=e^{-2}+2$ and $h(3)=e^{3}-3$;

Rel Min is $h(0)=1$.
9. T, T, F, T.
10.
(a) No relative extrema
(b) Relative min
(c) $(4, \infty)$
(d) $(-\infty, 4)$

Optimization: Applications to Maximum and Minimum (Section 12.2)

1.

(a) $P(q)=68 q-0.1 q^{2}-(23+20 q)=-0.1 q^{2}+48 q-23$
(b) Set $P^{\prime}=-0.2 q+48=0$, and solve for $q: q=240$
(c) $P(240)=-0.1 \cdot 240^{2}+48 \cdot 240-23=5737$ dollars.
2. $\bar{C}(x)=0.02 x+2+4000 x^{-1}$. Set $\bar{C}^{\prime}(x)=0.02-4000 x^{-2}=0$ and solve for $x: x=447$ units.
3. Maximize area $A=x y$ subject to $\operatorname{cost} 3 x+10 y=120$, where x is the length of the north and south sides, and y is the length of east and west sides.

Dimension is $x=20 f t, y=6 f t$. Max area $=120$ square feet.
4. Minimize the cost $C=4 x+8 y$ subject to area $x y=162$, where x is the length of the north and south sides, and y is the length of east and west sides.

Dimension is $x=18 \mathrm{ft}, y=9 \mathrm{ft}$. Minimum cost $=144$ dollars.
5. $R(p)=p \cdot q=p(-10 p+4220)=-10 p^{2}+4220 p$. Set $R^{\prime}(p)=-20 p+4220=0$ and solve for $p: p=\$ 211$. Maximum revenue is $R(211)=211 \cdot 2110=\$ 445210$.

Higher-order Derivatives, Acceleration and Concavity (Section 12.3)

1.

(a) $y^{\prime \prime}=8 e^{2 x-5}$
(b) $y^{\prime \prime}=14 x^{-3}+5 x^{-2}$
2. (a) 0; (b) negative, positive; (c) 0 ; (d) down, up.
3.
(a) down, up, down
(b) $(2,3),(-\infty, 2) \cup(3, \infty)$;
(c) $x=2,3$
(d) Relative max at $x=3.5$, no relative min.
(e) Abs max at $x=3.5$, no abs min.
4. $a(t)=s^{\prime \prime}(t)=-\frac{1}{4} t^{-\frac{3}{2}}+8$
5. $8 \mathrm{ft} / \mathrm{sec}^{2}$

Related Rates (Section 12.5)

1. (a) $2827 \mathrm{~cm}^{2} / \mathrm{sec}$; (b) $479 \mathrm{~cm}^{2} / \mathrm{sec}$
2. $0.03 \mathrm{~cm} / \mathrm{sec}$
3. When $x=4000, \frac{d \bar{C}}{d t}=\frac{d \bar{C}}{d x} \cdot \frac{d x}{d t}=\-2.84 per player per week. So, the average cost is decreasing at a rate of 2.84 dollars per player per week.

Elasticity (Section 12.6) (Optional, this lesson will not be covered on the exam)

1. down, 3.2%, decrease.
2. down, 0.65%, increase.
3.

(a) $E(p)=-(-18) \cdot \frac{p}{1080-18 p}=\frac{18 p}{1080-18 p}$, so $E(20)=\frac{18 \cdot 20}{1080-18 \cdot 20}=0.5$. This means the demand will drop by 0.5% for 1% increase from current price $\$ 20$.
(b) $0.5<1$, it is inelastic. The price should be raised to increase revenue.
(c) Solve for the price when $E(p)=1$. Solving $\frac{18 p}{1080-18 p}=1$ gives $p=\$ 30$.
(d) $R=p q=30(1080-18 \cdot 30)=16200$ dollars.
4.
(a) $E(p)=-(-4 p+33) \cdot \frac{p}{-2 p^{2}+33 p}=\frac{4 p-33}{-2 p+33}$
(b) $E(15)=\frac{4(15)-33}{-2(15)+33}=\frac{27}{3}=9>1$. It is elastic. The demand will drop by 9% if the price increases by 1%. The price should be lowered from $\$ 15$ to increase revenue.

