MAT 267: Calculus III For Engineers Test 2 Review

1. Give a geometric description of the domain for each function and sketch it.
a) $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)$
b) $f(x, y)=\sqrt{x}+\sqrt{y}$
c) $f(x, y)=\cos \left(x^{2}+y^{2}\right)$
d) $f x, y)=\sqrt{y-x^{2}} /\left(1-x^{2}\right)$
2. Give a geometric description of the contour curves for each function.
a) $f(x, y)=\sqrt{4-x-y}$
b) $f(x, y)=3 y-x^{2}$
c) $f(x, y)=x^{2}-y^{2}$
d) $f x, y)=\left(x^{2}+y^{2}\right)^{3 / 2}$
3. Give a geometric description of the level surfaces for each 3-variable function.
a) $F(x, y, z)=z-x^{2}-y^{2}$
b) $F(x, y, z)=4(x-2)^{2}+9(y-1)^{2}+z^{2}$
c) $F(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-2}$
d) $F(x, y, z)=x+2 y-z$
4. Sketch the contour of the function $f(x, y)=2 x^{2}+y^{2}$ corresponding to $z=8$.
5. Find all second partial derivatives of the given functions.
a) $f(x, y)=e^{x y} \sin (2 y)$
b) $g(x, y)=x y /(x-y)$
6. Find the equation of the tangent plane for each function at the given point.
a) $f(x, y)=x e^{x y}$ at $(2,0)$
b) $g(x, y)=2 x^{2}+\frac{1}{y}$ at $(3,1)$
c) $h(x, y)=\sqrt{y+\cos ^{2} x}$ at $(0,0)$
7. Use linearization to approximate $f(2.04,4.99)$, given that

$$
f(2,5)=6, \quad f_{x}(2,5)=-1, \quad f_{y}(2,5)=3 .
$$

8. Use differentials to approximate the change in the volume of a cone with radius $r=3$ and height $h=4$ if the radius is increased by 0.1 and the height is decreased by 0.2 . The volume of a cone is $V(r, h)=\frac{\pi}{3} r^{2} h$.
9. If $u=x^{2} y^{3}+z^{4}$ and $x=3 t^{2}+t+1, y=t e^{t}-2, z=\sin t$, find $d u / d t$ when $t=0$.
10. Consider a rectangle with dimensions x and y in cm . If x is growing at a rate of $2 \mathrm{~cm} / \mathrm{s}$ and y is growing at a rate of $3 \mathrm{~cm} / \mathrm{s}$, find the rate at which the length of the diagonal is changing when $x=5 \mathrm{~cm}$ and $y=8 \mathrm{~cm}$.
11. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ at $(s, t)=(0,2)$, given that

$$
w=\sqrt{x^{2}+y^{2}+x^{2}}, \quad x=s e^{t}, \quad y=t e^{s}, \quad z=e^{s t} .
$$

12. Use the chain rule to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the implicit surface: $y z+x \ln (y)=z^{2}$
13. Find the rate of change of the function $f(x, y)=x^{4}-x^{2} y^{3}$ at the point $(-1,3)$ in the direction of $\theta=2 \pi / 3$.
14. Find the rate of change of the function $f(x, y, z)=10 e^{-2 x^{2}-3 y^{2}+4 z^{2}}$ at the point $(1,1,1)$ in the direction that points toward the origin.
15. Find the maximum slope of the surface $z=e^{x^{2}-y^{2}}$ at the point $(3,3)$ and the unit vector that points in the direction of maximum increase.
16. Find all points where the minimum rate of increase of $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is in the direction of $\mathbf{i}+\mathbf{j}$.
17. Find a normal vector to the implicit surface $x+y+z=3 e^{x y z}$ at the point $(0,1,2)$.
18. Find the equations of the tangent plane and normal line for the implicit surface $x y z^{3}-2 z=6$ at the point $(4,2,1)$.
19. Find and classify all critical points of each function using the 2nd derivative test.
a) $f(x, y)=x y-2 x-2 y-x^{2}-y^{2}$
b) $f(x, y)=x^{3}+3 x y+y^{3}$
20. Find the point(s) on the surface $z^{2}=9+x y$ that are closest to the origin.
21. Find three numbers x, y and z that sum to 27 and whose product is at a maximum.
22. Find the dimensions of a rectangular box (with no top) that minimize the surface area if the box must have a volume of $32 \mathrm{ft}^{3}$.
23. Find the absolute extrema of $f(x, y)=2 x y$ over the disk $x^{2}+y^{2} \leq 9$.
24. Find the volume of the region that lies between the surfaces $z=2 x^{2}+3 y^{2}+8$ and $z=3$ and over the rectangle $R=[0,1] \times[0,3]$.
25. Evaluate the double integral $\int_{1}^{4} \int_{1}^{2}\left(\frac{x}{y}+\frac{y}{x}\right) d y d x$.
26. Find the average value of $f(x, y)=e^{2 x} \cos (y)$ over the rectangle $R=[0,2] \times\left[0, \frac{\pi}{4}\right]$.
27. Integrate $f(x, y)=x^{2} \cos (y)$ over the region bounded by $y=0, y=x^{3}$ and $x=1$.
28. Evaluate the double integral by switching the order of integration: $\int_{0}^{1} \int_{2 y}^{2} e^{x^{2}} d x d y$.
29. Use a double integral to find the volume of the tetrahedron that is under the plane $x+y+z=2$ and in the first octant.
30. Evaluate $\iint_{D} \sin \left(x^{2}+y^{2}\right) d A$ where D is the region in the first quadrant between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$.
31. Evaluate $\iint_{D} \tan ^{-1}\left(\frac{y}{x}\right) d A$ where D is the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ and between the lines $y=0$ and $y=x$.
32. Use a double integral to find the area of one loop of the rose $r=\cos (3 \theta)$.
33. Find the volume of the region bounded by the surfaces $z=x^{2}+y^{2}$ and $z=3-3 x^{2}-3 y^{2}$.
34. Evaluate the double integral by transforming to polar coordinates:

$$
\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}} x d y d x
$$

Answers

1. a) $D=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ (the region inside the unit circle, not including the circle)
b) $D=\{(x, y) \mid x \geq 0, y \geq 0\}$ (the first quadrant, including the axes)
c) $D=\mathbb{R}^{2}$ (the entire $x y$ plane)
d) $D=\left\{(x, y) \mid y \geq x^{2}, x \neq \pm 1\right\}$ (the region on or above the parabola $y=x^{2}$, with the lines $x= \pm 1$ removed)
2. a) parallel lines, all with slope -1
b) parabolas with a symmetry axis along y-axis
c) hyperbolas centered around the origin
d) concentric circles centered around the origin, unevenly spaced
3. a) paraboloids with a symmetry axis along z-axis
b) concentric ellipsoids centered around the point $(2,1,0)$
c) concentric spheres centered around the origin, unevenly spaced
d) parallel planes, each with normal vector $\langle 1,2,-1\rangle$
4. An ellipse centered at the origin and passing through the points $(\pm 2,0)$ and $(0, \pm \sqrt{8})$
5. a)
$f_{x x}=y^{2} e^{x y} \sin (2 y)$
$f_{x y}=f_{y x}=e^{x y}[(1+x) \sin (2 y)+2 y \cos (2 y)]$
$f_{y y}=e^{x y}\left[\left(x^{2}-4\right) \sin (2 y)+4 x \cos (2 y)\right]$
b)
$g_{x x}=2 y^{2} /(x-y)^{3}$
$g_{x y}=g_{y x}=2 y(2 y-x) /(x-y)^{3}$
$g_{y y}=2 x^{2} /(x-y)^{3}$
6. a) $z=x+4 y$
b) $z=12 x-y-16$
c) $z=1+\frac{1}{2} y$
7. $f(2.04,4.99) \approx 5.93$
8. $\Delta V \approx \pi / 5$
9. $\left.\frac{d u}{d t}\right|_{t=0}=-4$
10. $\frac{34}{\sqrt{89}} \mathrm{~cm} / \mathrm{s}$
11. $\left.\frac{\partial w}{\partial s}\right|_{(0,2)}=6 / \sqrt{5},\left.\frac{\partial w}{\partial t}\right|_{(0,2)}=2 / \sqrt{5}$
12. $\frac{\partial z}{\partial x}=\ln (y) /(2 z-y), \frac{\partial z}{\partial y}=1 /[y(2 z-y)]$
13. $-25-27 \sqrt{3} / 2$
14. $20 /(\sqrt{3} e)$
15. max slope: $6 \sqrt{2}$, unit vector: $\frac{1}{\sqrt{2}}\langle 1,-1\rangle$
16. $(1 / 2,3 / 2)$
17. $\mathbf{n}=\langle-9,1,1\rangle$
18. Tangent plane: $x+2 y+11 z=19$, Normal line: $\langle 4+t, 2+2 t, 1+11 t\rangle$
19. a) $(-2,-2)$ local max
b) $(0,0)$ saddle, $(-1,-1)$ local max
20. $(0,0, \pm 3)$
21. $(x, y, z)=(9,9,9)$
22. $(x, y, z)=(4,4,2) \mathrm{ft}$
23. abs min $=-9$ at $\left(-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right),\left(\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)$
abs $\min =9$ at $\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right),\left(-\frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)$
24. 44
25. $\frac{21}{2} \ln (2)$
26. $\frac{e^{4}-1}{\pi \sqrt{2}}$
27. $\frac{1}{3}(1-\cos 1)$
28. $\int_{0}^{2} \int_{0}^{x / 2} e^{x^{2}} d y d x=\frac{1}{4}\left(e^{4}-1\right)$
29. $4 / 3$
30. $\frac{\pi}{4}(\cos 1-\cos 9)$
31. $3 \pi^{2} / 16$
32. $\pi / 12$
33. $9 \pi / 8$
34. $-8 / 3$
