## MAT 267: Calculus III For Engineers

## Test 1 Review: Covers sections 10.1-10.9

1. If $P=(2,-1,0), Q=(4,1,1)$ and $R=(4,-5,4)$, find all three side lengths of the triangle $P Q R$.
2. Let $P=(2,1,4)$ and $Q=(4,3,10)$.
a) Find the midpoint between $P$ and $Q$.
b) Find the equation of the sphere that containts $P$ and $Q$ as opposite points on its diameter.

3 . Find the equation of the sphere centered at $(1,-2,3)$, with a radius of 5 .
4. Find the equation of the largest sphere possible that lies entirely in the first octant and is centered at $(3,2,5)$.
5. Find the equation of the sphere that passes through the origin and is centered at $(3,2,1)$.
6. Show that the following equation represents a sphere and find its center and radius:

$$
2 x^{2}+2 y^{2}+2 z^{2}=8 x-24 z+1
$$

7. If $P=(3,1,3)$ and $\overrightarrow{P Q}=\langle 1,-1,-2\rangle$, then find the coordinates of $Q$.
8. Find the components of

$$
\mathbf{v}=3(\mathbf{i}-2 \mathbf{j}+9 \mathbf{k})-6(\mathbf{i}+2 \mathbf{j})-10 \mathbf{k}+\mathbf{j} .
$$

9. Find the magnitude of $\mathbf{v}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}$.
10. Find the unit vector that points from $P=(1,2)$ to $Q=(4,6)$.
11. If $\mathbf{v}=\langle 2,-4,4\rangle$, find the vector that is anti-parallel to $\mathbf{v}$ and has half its magnitude.
12. Find the unit vector in $\mathbb{R}^{2}$ that makes an angle of $\theta=5 \pi / 6$ with the $+x$-axis.
13. A river that runs north and south has a current that flows at 5 mph southbound. A boat leaves the west shore, travelling at 20 mph . At what angle (with respect to east) should the boat be pointed so that it will travel directly east when crossing the river?
14. Find all values of $x$ such that $\mathbf{v}=\langle 2 x,-x, 16\rangle$ is orthogonal to $\mathbf{w}=\langle 5, x,-1\rangle$.
15. If $|\mathbf{u}|=3$ and $\mathbf{u} \cdot \mathbf{v}=-1$, find the value of $\mathbf{u} \cdot(2 \mathbf{u}+5 \mathbf{v})$.
16. Let $\mathbf{F}=\langle 3,4,1\rangle$ and $\mathbf{D}=\langle-1,2,5\rangle$.
a) Find the angle between $\mathbf{F}$ and $\mathbf{D}$.
b) Find vectors $\mathbf{p}$ and $\mathbf{n}$ such that $\mathbf{F}=\mathbf{p}+\mathbf{n}$, where $\mathbf{p}$ is parallel to $\mathbf{D}$ and $\mathbf{n}$ is orthogonal to $\mathbf{D}$.
17. A force vector $\mathbf{F}=\langle 2,3,-9\rangle \mathrm{N}$ acts on a particle that moves from $P=(1,2,4) \mathrm{m}$ to $Q=(5,3,1)$ m . How much work was done by the force?
18. Find the two unit vectors that are orthogonal to both $\mathbf{u}=\langle 0,1,2\rangle$ and $\mathbf{v}=\langle 1,-2,3\rangle$.
19. Find the area of the triangle with vertices $(1,1,2),(2,3,1)$ and $(-1,0,3)$.
20. Suppose $|\mathbf{u}|=6$ and $|\mathbf{v}|=2$, and the angle between them is $\theta=\pi / 3$. Find the value of $|\mathbf{u} \times \mathbf{v}|$.
21. Find the equation for the plane that contains the points $(1,0,0),(0,2,0)$ and $(0,0,4)$.
22. Find the vector, parametric and symmetric equations of the line that passes through $(1,1,1)$ at $t=0$ and $(3,2,2)$ at $t=2$.
23. Find an equation for the line of intersection of the planes $x+y+z=0$ and $x-y-z=2$.
24. Find the point where the plane $2 x-y+z=2$ intersects the line $\mathbf{r}(t)=\langle 2-t, 1+3 t, 4 t\rangle$.
25. Find an equation of the plane through the point $(5,5,0)$ and is parallel to the plane $x-y-2 z=2$.
26. A particle travels along a straight line, and is at the point $(0,1,-1)$ at $t=1$ and at the pont $(7,5,3)$ at $t=4$. Find the parametric equations for its trajectory.
27. Find the unit tangent vector of $\mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$ at $t=2$.
28. Find parametric equations for the tangent line of the curve $\mathbf{r}(t)=\left\langle t^{3}, t^{2}-t, t^{4}-1\right\rangle$ and the point $(8,2,15)$.
29. Find parametric equations for the curve of intersection of the plane $x+y-z=3$ and the parabolic cylinder $z=x^{2}$.
30. The helix $\langle\cos t, \sin t, t\rangle$ intersects the curve $\left\langle 1+t, t^{2}, t^{3}\right\rangle$ at the point $(1,0,0)$. Find the angle (in radians) of intersection of these two curves.
31. Suppose $\mathbf{r}^{\prime}(t)=\left\langle 6 t, \cos (2 t), e^{4 t}\right\rangle$ and $\mathbf{r}(0)=\langle 1,4,-1\rangle$. Find the vector equation for $\mathbf{r}(t)$.
32. Evaluate $\int_{0}^{4}\left(t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}\right) d t$.
33. Find the length of the curve $\mathbf{r}(t)=\langle 4 t+1,3 t, 8 t+7\rangle, 1 \leq t \leq 4$.
34. Find the length of the curve $\mathbf{r}(t)=\langle t, 3 \cos t, 3 \sin t\rangle,-5 \leq t \leq 5$.
35. Find the TNB vectors of the helix $\mathbf{r}(t)=\langle 2 \cos (3 t), 5 t, 2 \sin (3 t)\rangle$ at $t=\pi$.
36. A particle has a position function $\mathbf{r}(t)=\left\langle t \ln t, t, e^{-t}\right\rangle$. Find its velocity, speed and acceleration when $t=1$.
37. A spaceship is observed to have a position function $\mathbf{r}(t)=\left\langle 2 t^{2}, 2 t, t^{2}-6 t\right\rangle$. At what time is its speed at a maximum?
38. A projectile is launched from the origin at a speed of $50 \mathrm{~m} / \mathrm{s}$ and at an angle of $\theta=60^{\circ}$ above the $+x$-axis.
a) How long is it in the air?
b) What is the maximum height it reaches?
c) What is the $x$ coordinate where it lands?
39. Find the position vector of a particle with acceleration $\mathbf{a}(t)=\langle 2 t, \sin t, \cos 2 t\rangle$, with an initial velocity $\mathbf{v}(0)=\langle 1,0,0\rangle$ and initial position $\mathbf{r}(0)=\langle 0,1,0\rangle$. If the particle has a mass of $m=3$, find the magnitude of the force acting on it at $t=\pi / 2$.
40. A planet is observed to have a circular orbital radius of $R=3 \times 10^{8} \mathrm{~km}$ and it makes a full revolution around its star every 430 (Earth) days. What is the magnitude of its centripetal acceleration in units of $\mathrm{m} / \mathrm{s}^{2}$ ? State the answer in scientific notation with 3 significant figures.

## Answers

1. $P Q=3, P R=6, Q R=\sqrt{45}$
2. a) midpoint: $(3,2,7)$
b) sphere: $(x-3)^{2}+(y-2)^{2}+(z-7)^{2}=11$
3. $(x-1)^{2}+(y+2)^{2}+(z-3)^{2}=25$
4. $(x-3)^{2}+(y-2)^{2}+(z-5)^{2}=4$
5. $(x-3)^{2}+(y-2)^{2}+(z-1)^{2}=14$
6. $(x-2)^{2}+y^{2}+(z+6)^{2}=\frac{81}{2} \Rightarrow$ center $=(2,0,-6)$, radius $=9 / \sqrt{2}$
7. $Q=(4,0,1)$
8. $\mathbf{v}=\langle-3,-17,17\rangle$
9. $|\mathbf{v}|=\sqrt{11}$
10. $\frac{1}{5}\langle 3,4\rangle$
11. $\frac{1}{3}\langle-1,2,-2\rangle$
12. $\frac{1}{2}\langle-\sqrt{3}, 1\rangle$
13. $\theta=\sin ^{-1}(1 / 4)=0.25268 \mathrm{rad}=14.48^{\circ}$
14. $x=2, x=8$
15. 13
16. a) $\theta=1.2046 \mathrm{rad}=69.02^{\circ}$
b) $\mathbf{p}=\langle-1 / 3,2 / 3,5 / 3\rangle, \mathbf{n}=\langle 10 / 3,10 / 3,-2 / 3\rangle$
17. 38 J
18. $\pm \frac{1}{\sqrt{54}}\langle 7,2,-1\rangle$
19. $\sqrt{11} / 2$
20. $6 \sqrt{3}$
21. $4 x+2 y+z=4$
22. vector: $\langle 1+2 t, 1+t, 1+t\rangle$
parametric: $x=1+2 t, y=1+t, z=1+t$
symmetric: $\frac{x-1}{2}=y-1=z-1$
23. $\langle 1,-1+2 t,-2 t\rangle$
24. $(1,4,4)$
25. $x-y-2 z=0$
26. $\frac{1}{3}\langle 7 t-7,4 t-1,4 t-7\rangle$
27. $\frac{1}{9}\langle 4,8,1\rangle$
28. $x=8+12 t, \quad y=2+3 t, \quad z=15+32 t$
29. $x=t, \quad y=3+t^{2}-t, \quad z=t^{2}$
30. $\pi / 2$
31. $\mathbf{r}(t)=\left\langle 3 t^{2}+1,-\frac{1}{2} \sin (2 t)+4, \frac{1}{4}\left(e^{4 t}-5\right)\right\rangle$
32. $\left\langle 8, \frac{64}{3}, 64\right\rangle$
33. $3 \sqrt{89}$
34. $10 \sqrt{10}$
35. $\mathbf{T}=\frac{1}{\sqrt{61}}\langle 0,5,-6\rangle, \mathbf{N}=\langle 1,0,0\rangle, \mathbf{B}=\frac{1}{\sqrt{61}}\langle 0,-6,-5\rangle$
36. $\mathbf{v}=\left\langle 1,1,-e^{-1}\right\rangle, \quad|\mathbf{v}|=\sqrt{2+e^{-2}}, \quad \mathbf{a}=\left\langle 1,0, e^{-1}\right\rangle$
37. $t=0.6$
38. a) 8.83 s, b) $\left.y_{\max }=95.57 \mathrm{~m}, ~ c\right) ~ x_{\max }=220.70 \mathrm{~m}$
39. $\mathbf{r}(t)=\left\langle t^{3} / 3+t, t-\sin t+1,1 / 4-\cos (2 t) / 4\right\rangle, \quad|\mathbf{F}|=3 \sqrt{\pi^{2}+2}$
40. $8.58 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
