
LIST OF CONCEPTS AND SKILLS FOR TEST 2 

The test covers sections 3.1-3.5, 3.7, 3.8, 6.1, 6.2 
 

Chapter 3  

The Wronskian: (Section 3.2) 

• Know Theorem 3.2.1: Existence and Uniqueness. Consider the Initial Value Problem 

𝑦′′ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑔(𝑡),            𝑦(𝑡0) = 𝑦0, 𝑦′(𝑡0) = 𝑦0
′  

where 𝑝(𝑡), 𝑞(𝑡) and 𝑔(𝑡) are continuous on an open interval 𝐼 that contains 𝑡0. Then there is 

exactly one solution of this problem, and the solution exists throughout the interval 𝐼. 

• Know Theorem 3.2.2: Principle of Superposition. If 𝑦1 and 𝑦2 are solutions of the 

homogeneous differential equation 𝑦′′ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 0, so is 𝑐1𝑦1 + 𝑐2𝑦2 for any 

constants 𝑐1 and 𝑐2. 

• Know how to find the Wronskian of two functions,  𝑦1 and 𝑦2. 

• Know Theorem 3.2.4: Wronskian of Solutions: Given two solutions 𝑦1 and 𝑦2 of a 

homogeneous ODE, always check whether the Wronskian of the two solutions is not 

everywhere zero. If this is case the two solutions are linearly independent and we say they form 

a Fundamental Set of Solutions for the ODE. The general solution is given by 𝑐1𝑦1 + 𝑐2𝑦2 with 

𝑐1 and 𝑐2 arbitrary constants. 

 

Linear Homogeneous DEs with constant coefficients (Sections 3.1, 3.3, 3.4) 

Given the homogeneous ODE  𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0 with 𝑎, 𝑏 and 𝑐 constant: 

• The characteristic equation is 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0. 

• If the roots of the characteristic equation are real and distinct, 𝑟1 and 𝑟2, then the general 

solution of the homogeneous ODE is 𝑦 = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡. 

• If 𝑟1 = 𝑟2 = 𝑟, then the general solution is 𝑦 = 𝑐1𝑒𝑟𝑡 + 𝑐2𝑡𝑒𝑟𝑡. 

• If the roots of the characteristic equation, 𝑟1 and 𝑟2, are complex conjugates 𝑎 ± 𝑏𝑖, then the 

general solution is 𝑦 = 𝑐1𝑒𝑎𝑡 cos(𝑏𝑡) + 𝑐2𝑒𝑎𝑡 sin(𝑏𝑡). 

• Know how to determine the exact solution (solve for 𝑐𝑘) of the above when given appropriate 

initial conditions. 

This can be generalized to higher order differential equations: 

If a root 𝑟 of the characteristic equation has multiplicity 𝑘, then 𝑒𝑟𝑡, 𝑡𝑒𝑟𝑡, 𝑡2𝑒𝑟𝑡, … , 𝑡𝑘−1𝑒𝑟𝑡 are 𝑘 

linearly independent solutions. 

If the complex roots 𝑎 ± 𝑏𝑖 are repeated 𝑘 times, then the general solution must contain the terms 

𝑒𝑎𝑡 cos(𝑏𝑡) , 𝑒𝑎𝑡 sin(𝑏𝑡), 𝑡𝑒𝑎𝑡 cos(𝑏𝑡) , 𝑡𝑒𝑎𝑡 sin(𝑏𝑡), … , 𝑡𝑘−1𝑒𝑎𝑡 cos(𝑏𝑡) , 𝑡𝑘−1𝑒𝑎𝑡 sin(𝑏𝑡). 

 

Reduction of order (Section 3.4) 

Suppose we know one solution 𝑦1(𝑡)  of  𝑦′′ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 0 , not everywhere zero.  To find 

another solution, let 𝑦2(𝑡) = 𝑣(𝑡)𝑦1(𝑡).  To find the unknown function 𝑣(𝑡), substitute 𝑦2(𝑡) into the 

differential equation. The result will be a DE involving 𝑣′ and 𝑣′′.  This DE can be reduced to first 

order by letting 𝑢 = 𝑣′ and solved using techniques from chapters 1 and 2. 

 
 

Non-Homogeneous Equations, Undetermined Coefficients (Section 3.5) 

• Know Theorem 3.5.2: Solutions of Nonhomogeneous Equations: The general solution of a 

NonHomogeneous ODE is given by 𝑦 = 𝑦𝑐 + 𝑦𝑝 where 𝑦𝑐 is the complementary solution (the 



general solution of the associated HODE) and 𝑦𝑝 is a particular solution of the Non-

Homogeneous ODE. 

• Method of undetermined coefficients for linear DEs with constant coefficients: This method 

works only when the function g(t) is a polynomial, an exponential function, a sine or cosine 

and or a sum/product of these functions. The method consists of taking as a trial solution for 𝑦𝑝 

a linear combination of linearly independent terms appearing in g(t) and in all their derivatives 

g'(t), g''(t), … .  If any of these terms duplicates a solution of the associated homogeneous 

ODE, then we need to multiply the term by 𝑡𝑠 where 𝑠 is the smallest non-negative integer 

such that no term in 𝑦𝑝 duplicates a term in the complementary function 𝑦𝑐.  The undetermined 

coefficients A, B, C, … are then determined by substituting 𝑦𝑝 and the appropriate derivatives 

of it into the original DE. Once 𝑦𝑝  is determined, a general solution is given by 𝑦 = 𝑦𝑐 + 𝑦𝑝 

where 𝑦𝑐  is the complementary function. 

• You must be able to write the correct expression for 𝑦𝑝  with the minimal number of 

undetermined coefficients. 

• You must be able to solve for the undetermined coefficients and thus write explicitly a solution 

of the given non-homogeneous ODE. 

• You must be able to find a general solution for the given ODE. 
 

Mechanical vibrations (Section 3.7) 

• Assume a mass 𝑚 is attached to a spring with constant 𝑘, and assume there is a dashpot 

producing damping proportional to the velocity, with constant 𝛾. When no external force is 

applied, the ODE governing the motion of the mass is given by 𝑚𝑢′′ + 𝛾𝑢′ + 𝑘𝑢 = 0. 

• Undamped Free Vibration: if 𝛾 = 0, the equation reduces to 𝑚𝑢′′ + 𝑘𝑢 = 0 with solution 

𝑢(𝑡) = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡), (Simple Harmonic Motion) where 𝜔0 = √𝑘/𝑚 is called 

the circular frequency. The period of the motion is given by 𝑇 = 2𝜋/𝜔0 .   Be able to rewrite 

the solution as 𝑢(𝑡) = 𝑅 cos(𝜔0𝑡 − 𝛿) where 𝑅 is the amplitude and 𝛿 is the phase angle. 

• Damped Free Vibration: if 𝛾 ≠ 0, we can have three different kinds of solutions depending on the 

roots of the characteristic equation. If the roots are both real, they must be negative and the 

motion is overdamped; if the roots are repeated (necessarily real and negative) the motion is 

critically damped; if the roots are complex (with negative real part) the motion is underdamped.   

For underdamped motion, know how to determine the quasi frequency and quasi period. 

Forced Vibrations  (Section 3.8) 

We consider the case of mass 𝑚 is attached to a spring with constant 𝑘, a dashpot with constant 𝛾 and 

also acted upon by an external force 𝐹(𝑡).  The governing ODE is given by: 𝑚𝑢′′ + 𝛾𝑢′ + 𝑘𝑢 = 𝐹(𝑡). 

We consider the particular case where 𝐹(𝑡) = 𝐹0 cos(𝜔𝑡). 

• Forced Vibrations Without Damping: if 𝛾 = 0, the equation reduces to 𝑚𝑢′′ + 𝑘𝑢 = 𝐹0 cos(𝜔𝑡). 

• If 𝜔 ≠ 𝜔0 the solution is 𝑢 = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡) + 𝐶 cos(𝜔𝑡) where  

 𝑢𝑐 = 𝑐1 cos(𝜔0𝑡) + 𝑐2 sin(𝜔0𝑡) is the complementary solution and 𝑢𝑝 = 𝐶 cos(𝜔𝑡) is 

the particular solution (determined using the method of undetermined coefficients).  Note 

that the constants c1 and c2 depend on the initial conditions. So we see that the resulting 

motion is the superposition of two oscillations, one with natural frequency 𝜔0, the other 

with frequency 𝜔 of the external force. 

• BEATS: If 𝜔 ≈ 𝜔0  and the initial conditions are set to 𝑢(0) = 0, 𝑢′(0) = 0, we have the     



phenomenon of beats (a rapid oscillation with a (comparatively) slowly varying periodic 

amplitude). 

• RESONANCE: If 𝜔 = 𝜔0 we have the phenomenon of pure resonance, the increase 

without bound in the amplitude of the oscillations 

• Forced Vibrations with Damping: if 𝛾 ≠ 0, we can have three different kind of solutions 

depending on the roots of the characteristic equation.  In any case, the complementary solutions 

𝑢𝑐(𝑡) → 0 as 𝑡 → ∞.  So, 𝑢𝑐(𝑡) is a transient solution (i.e. dying out in time) leaving only the 

particular solution 𝑢𝑝 = 𝐶 cos(𝜔𝑡 − 𝛼)  (steady state solution). 

NOTE: It is not a good idea to memorize the formulas above. Just remember the assumptions for 

Beats and Pure Resonance and be able to solve the Differential Equations using the method of 

Undetermined Coefficients from Section 3.5. 

                                     CHAPTER 6: THE LAPLACE TRANSFORM 

 6.1:  Definition of the Laplace Transform 

• The Laplace transform of 𝑓(𝑡) is defined through an improper integral ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
. Be able to 

calculate the transform of basic functions using the definition.  

• Know how to compute the Laplace transform of functions using the table. A preliminary algebraic 

manipulation may be necessary. 

6.2:  Solution of Initial Value Problems 

• Know how to compute inverse transform functions. You will have to use some algebraic manipulation 

and/or partial fractions decomposition (PFD) to put it in a form that can be found in the Table. 

• Know how to transform derivatives of functions:  

(1)   ℒ{𝑦′(𝑡)} = 𝑠𝑌(𝑠) − 𝑦(0) 

(2)   ℒ{𝑦′′(𝑡)} = 𝑠2𝑌(𝑠) − 𝑠 𝑦(0) − 𝑦′(0)               

• Know how to partially work to solve linear differential equations using the Laplace transform.    

-  Apply the Laplace transform to both sides of the equation and use formulas (1) and (2) above so  

that the equation contains the Laplace of 𝑦 only (which we denote by 𝑌(𝑠)). 

-  Substitute the initial conditions and solve for 𝑌(𝑠).   

- Compute the inverse transform of 𝑌(𝑠). This is the solution to the DE. 

• Know how to solve homogeneous linear differential equations using the Laplace transform by inverting 

the transform.    

 

 

 


