I. The Wronskian.

1. Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution.
a) $t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2, \quad y(6)=0, \quad y^{\prime}(6)=-1$
b) $(t+1) y^{\prime \prime}+t y^{\prime}+y=\sec t, \quad y(0)=2, y^{\prime}(0)=-1$
c) $(t-4) y^{\prime \prime}+3 t y^{\prime}+\ln (t) y=\sin t, \quad y(1)=-2, y^{\prime}(1)=-1$
2. Find the Wronskian of the following pair of functions, $\left\{3 e^{2 t}, t e^{2 t}\right\}$.
3. Consider the ODE $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0$ with the initial conditions $y(1)=1, y^{\prime}(1)=1$.
(i) What is the maximum interval of validity, I , of the solution?
(ii) Verify that the functions $y_{1}(t)=t^{-1}$ and $y_{2}(t)=t^{-1} \ln (t)$ satisfy the ODE for t in the interval I .
(iii) Find the Wronskian $W\left(y_{1}, y_{2}\right)$ to show that $y_{1}(t)$ and $y_{2}(t)$ form a fundamental set of solutions.
(iv) Solve the initial value problem.
4. Suppose $y_{1}(t)=t$ and $y_{2}(t)=t^{2}$ are both solutions of the second order linear equation $y^{\prime \prime}+p(t) y^{\prime}+q(t)=0$. Which of the functions below are guaranteed to also be solutions of the same equation?
A. $y=t^{2}-1$
B. $y=5 t$
C. $y=-9 t^{2}+17 t$
D. $y=0$
5. Which of the following is NOT a fundamental set of solutions for $y^{\prime \prime}-y=0$?
A. $\left\{e^{t}, e^{-t}\right\}$
B. $\left\{2 e^{t}, 2 e^{-t}\right\}$
C. $\left\{t e^{t}, e^{-t}\right\}$
D. $\left\{\left(e^{t}+e^{-t}\right), \frac{1}{2}\left(e^{t}+e^{-t}\right)\right\}$
E. $\left\{\frac{1}{2}\left(e^{t}+e^{-t}\right), \frac{1}{2}\left(e^{t}-e^{-t}\right)\right\}$
F. $\left\{\frac{1}{2}\left(e^{t}+e^{-t}\right), e^{t}\right\}$

II. HODEs/IVP with constant coefficients.

1. Find a real valued solution to the following initial value problems.
a. $y^{\prime \prime}-6 y^{\prime}+13 y=0$, with $y(0)=1, y^{\prime}(0)=1$.
b. $y^{\prime \prime}+4 y^{\prime}+4 y=0$, with $y(0)=1, y^{\prime}(0)=-4$.
c. $6 y^{\prime \prime}+7 y^{\prime}+2 y=0$, with $y(0)=7, y^{\prime}(0)=-4$.

III. Reduction of order:

1. The ODE $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0$ has a solution $y_{1}(t)=\frac{1}{t}$ for $t>0$. Find the general solution.
2. The ODE $2 t y^{\prime \prime}-5 y^{\prime}+\frac{3}{t} y=0$ has a solution $y_{1}(t)=t^{3}$ for $t>0$. Find the general solution.

IV. Undetermined coefficients

1. Find a particular solution and the general solution of the ODE $y^{\prime \prime}+2 y^{\prime}+y=3 t^{2}+5 e^{2 t}$.
2. Find a particular solution and the general solution of the ODE: $y^{\prime \prime}-y^{\prime}-2 y=4 \sin (3 t)$.
3. Find a particular solution and the general solution of the ODE: $y^{\prime \prime}-y^{\prime}-12 y=3 t e^{2 t}$.
4. Determine a suitable form for the particular solution $Y(t)$, if the method of undetermined coefficients is to be used. You do not need to determine the values of the coefficients.
(i) $y^{\prime \prime}+3 y^{\prime}=2 t^{2}+t^{2} e^{-3 t}+\sin (3 t)$
(ii) $y^{\prime \prime}+y=t(1+\sin t)$
(iii) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{t} \cos (2 t)+(3 t+4) e^{2 t} \sin (t)$
(iv) $y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-t}+2 e^{-t} \cos (t)+4 t^{2} e^{-t} \sin (t)$
(v) $y^{\prime \prime}-4 y^{\prime}+4 y=2 t^{2}+4 t e^{2 t}+t \sin (2 t)$

V. Mass-Spring system

1. Solve for the position (in meters) of a mass attached to a spring with no damping if the mass is $m=$ 1 kg , the spring constant is $k=4 \frac{\mathrm{~N}}{\mathrm{~m}}$, and $x(0)=-3 \mathrm{~m}$ and $x^{\prime}(0)=6 \frac{\mathrm{~m}}{\mathrm{~s}}$. Also write your answer in $A \cos (\omega t-\alpha)$ form.
2. Solve for the position (in meters) of a mass attached to a spring with damping if the mass is $m=3 \mathrm{~kg}$, the damping constant is $c=2 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}$, the spring constant is $k=\frac{37}{3} \frac{\mathrm{~N}}{\mathrm{~m}}$, and $x(0)=3 \mathrm{~m}$ and $x^{\prime}(0)=6 \frac{\mathrm{~m}}{\mathrm{~s}}$. Also write your answer in $A e^{-\rho} \cos (\omega t-\alpha)$ form.
3. A mass of 0.5 kilograms stretches a spring 0.14 meters. Suppose the mass is displaced an additional 0.06 m in the positive (downward) direction and then released with an initial upward velocity of $8 \mathrm{~m} / \mathrm{s}$ The mass is in a medium that exerts a viscous resistance of 12 N when the mass has a velocity of $6 \mathrm{~m} / \mathrm{s}$. Write an IVP for the position x (in meters) of the mass at any time t (in seconds). Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration due to gravity.
4. For the following, choose the best description of the system from the following:

Simple Harmonic Motion (SHM) Overdamped (OD) Underdamped (UD) Critically
Damped (CD) Beating (B) \quad Resonant (R) Steady-State plus Transient (SST)
a. $x^{\prime \prime}+4 x=0$
b. $2 x^{\prime \prime}+7 x^{\prime}+3 x=0$
c. $y^{\prime \prime}+(1.8)^{2} y=\cos (2 t)$
d. $y^{\prime \prime}+4 y=\cos (2 t)$
e. $x^{\prime \prime}+x^{\prime}+x=0$
f. $y^{\prime \prime}+y^{\prime}+y=\cos (t)$
g. $x^{\prime \prime}+2 x^{\prime}+x=0$
5. The motion of a force mass-spring system is described by the following IVP:

$$
x^{\prime \prime}+9 x=\cos (3 t), \quad x(0)=0, \quad x^{\prime}(0)=0
$$

Explain why you expect resonance to occur.
6. Solve for the motion of a force mass-spring system is described by the following IVP:

$$
x^{\prime \prime}+(2.8)^{2} x=\cos (3 t), \quad x(0)=0, \quad x^{\prime}(0)=0
$$

7. A mass $m=1 \mathrm{~kg}$ is attached to a spring with constant $k=2 \mathrm{~N} / \mathrm{m}$ and damping constant γ Ns / m. Determine the value of γ so that the motion is critically damped.

VI. Laplace Transform

1. Use the definition of the Laplace transform to find $F(s)=\mathcal{L}\{f(t)\}$ for the following functions.
(a) $f(t)= \begin{cases}3, & 0 \leq t<4 \\ 0, & 4 \leq t<\infty\end{cases}$
(b) $f(t)= \begin{cases}0, & t<2 \\ 6, & 2 \leq t\end{cases}$
(c) $f(t)= \begin{cases}0, & t<2 \\ 5 e^{-3 t}, & 2 \leq t\end{cases}$
(d) $f(t)= \begin{cases}2 e^{t}, & t<1 \\ 2 e, & 1 \leq t\end{cases}$

Given table:

	$f(t)=\mathscr{L}^{-1}\{F(s)\}$	$F(s)=\mathscr{L}\{f(t)\}$
	$y(t)$	$Y(s)$
1	1	$\frac{1}{s}$
2	t^{n}	$\frac{n!}{s^{n+1}}$
3	$e^{a t}$	$\frac{1}{s-a}$
4	$\cos (b t)$	$\frac{s}{s^{2}+b^{2}}$
5	$\sin (b t)$	$\frac{b}{s^{2}+b^{2}}$
6	$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
7	$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
8	$y^{\prime}(t)$	$s Y(s)-y(0)$
9	$y^{\prime \prime}(t)$	$s^{2} Y(s)-s y(0)-y^{\prime}(0)$

2. Find the Laplace transform of the following functions.
(a) $f(t)=6 e^{-2 t} \sin (3 t)$
(b) $f(t)=6 t^{3}+5 e^{3 t}$
(c) $f(t)=4 \cos (2 t)-2 \sin (2 t)$
3. Find the inverse Laplace transform:
(a) $F(s)=\frac{7}{s^{3}}+\frac{9}{s-4}$
(b) $F(s)=\frac{8}{s^{2}-s-6}$
(c) $F(s)=\frac{7 s+2}{s^{2}+9}$
(d) $F(s)=\frac{3 s+8}{s^{2}+4 s+29}$
4. The transform of the solution to a certain differential equation is given by $Y(s)=\frac{2 s-7}{s^{2}+10}$. Determine the solution $y(t)$ of the differential equation.
5. Suppose that the function $y(t)$ satisfies the $\mathrm{DE} y^{\prime \prime}-2 y^{\prime}-y=3 \sin (4 t)$, with initial values $y(0)=-1$, $y^{\prime}(0)=1$. Find the Laplace transform of $y(t)$ (and solve for $Y(\mathrm{~s})$).
6. Consider the following IVP: $y^{\prime \prime}+6 y^{\prime}+13 y=2 t^{3}, y(0)=2, y^{\prime}(0)=-1$. Find the Laplace transform of the solution $y(t)$ (and solve for $Y(\mathrm{~s})$)
7. Consider the following IVP: $y^{\prime \prime}+81 y=0, y(0)=2, y^{\prime}(0)=-4$.
(a) Find the Laplace transform of the solution $y(t)$ (and solve for $Y(\mathrm{~s})$).
(b) Invert the transform to solve for $y(t)$.
8. Consider the following IVP: $y^{\prime \prime}+3 y^{\prime}=0, y(0)=-2, y^{\prime}(0)=3$.
(a) Find the Laplace transform of the solution $y(t)$ (and solve for $Y(\mathrm{~s})$).
(b) Invert the transform to solve for $y(t)$.
9. Consider the following IVP: $y^{\prime \prime}+6 y^{\prime}+13 y=0, y(0)=2, y^{\prime}(0)=-1$.
(a) Find the Laplace transform of the solution $y(t)$ (and solve for $Y(\mathrm{~s})$).
(b) Invert the transform to solve for $y(t)$.
10. Consider the following IVP: $y^{\prime \prime}-3 y^{\prime}-10 y=5, y(0)=2, y^{\prime}(0)=-4$.
(a) Find the Laplace transform of the solution $y(t)$.
(b) Find the solution $y(t)$ by inverting the transform.

I

1. a) $4<t$ or in interval form $(4, \infty) \quad$ b) $-1<t<\frac{\pi}{2}$ or $\left(-1, \frac{\pi}{2}\right) \quad$ (c) $0<t<4$ or $(0,4)$
2. $3 e^{4 t}$
3. (i) $t>0$
(iii) $W\left(y_{1}, y_{2}\right)=\frac{1}{t^{3}}$. Since the Wronskian is nonzero on $\mathrm{I}, y_{1}(t)$ and $y_{2}(t)$ form a fundamental set of solutions.
(iv) $y=\frac{1+2 \ln (t)}{t}$
4. By the principle of superposition, B, C, D
5. $\mathrm{C}: t e^{t}$ is not a solution; D : the two functions are not linearly independent
II.
6. (a) $y=-e^{3 t} \sin (2 t)+e^{3 t} \cos (2 t)$
(b) $y(t)=e^{-2 t}-2 t e^{-2 t}$
(c) $y(t)=3 e^{-2 t / 3}+4 e^{-t / 2}$
III.
7. $y(t)=\frac{c_{1}}{t}+c_{2} \frac{\ln (t)}{t}$
8. $y(t)=c_{1} t^{3}+c_{2} \sqrt{t}$
IV.
9. $y_{p}=3 t^{2}-12 t+18+\frac{5}{9} e^{2 t}$; general: $y=c_{1} e^{-t}+c_{2} t e^{-t}+3 t^{2}-12 t+18+\frac{5}{9} e^{2 t}$
10. $y_{p}=\frac{6}{65} \cos (3 t)-\frac{22}{65} \sin (3 t)$; general: $y=c_{1} e^{-t}+c_{2} e^{2 t}+\frac{6}{65} \cos (3 t)-\frac{22}{65} \sin (3 t)$
11. $y_{p}=\left(-\frac{3}{10} t-\frac{9}{100}\right) e^{2 t}$; general: $y=c_{1} e^{-3 t}+c_{2} e^{4 t}+\left(-\frac{3}{10} t-\frac{9}{100}\right) e^{2 t}$
12.

(i) $\quad Y(t)=t\left(A t^{2}+B t+C\right)+t\left(D t^{2}+E t+F\right) e^{-3 t}+G \sin (3 t)+H \cos (3 t)$
(ii) $\quad Y(t)=A t+B+t(C t+D) \sin (t)+t(E t+F) \cos (t)$
(iii) $Y(t)=A e^{t} \cos (2 t)+B e^{t} \sin (2 t)+(C t+D) e^{2 t} \cos (t)+(E t+F) e^{2 t} \sin (t)$
(iv) $Y(t)=A e^{-t}+t\left(B t^{2}+C t+D\right) e^{-t} \cos (t)+t\left(E t^{2}+F t+G\right) e^{-t} \sin (t)$
(v) $\quad Y(t)=A t^{2}+B t+C+t^{2}(D t+E) e^{2 t}+(F t+G) \cos (2 t)+(H t+I) \sin (2 t)$
V.

1. $x(t)=-3 \cos (2 t)+3 \sin (2 t)=\sqrt{18} \cos \left(2 t-\frac{3 \pi}{4}\right)$
2. $x(t)=3 e^{-t / 3} \cos (2 t)+\frac{7}{2} e^{-t / 3} \sin (2 t)=\frac{\sqrt{85}}{2} e^{-t / 3} \cos \left(2 t-\tan ^{-1}\left(\frac{7}{6}\right)\right)$
3. $0.5 x^{\prime \prime}+2 x^{\prime}+35 x=0, x(0)=0.06, x^{\prime}(0)=-8$
4.

a. SHM (Undamped)
b. OD
c. B
d. R
e. Underdamped
f. SST
g. $C D$
5. (a) $\omega_{0}=3=\omega$
6. (a) $\omega_{0}=2.8 \approx 3=\omega$
(b) $x(t)=\frac{1}{1.16}(\cos (2.8 t)-\cos (3 t))=\frac{25}{29}(\cos (2.8 t)-\cos (3 t))$
7. $2 \sqrt{2}$
VI.

1. (a) $\frac{3-3 e^{-4 s}}{s}$
(b) $\frac{6 e^{-2 s}}{s}$
(c) $\frac{5 e^{-2(s+3)}}{s+3}$
(d) $\frac{2 s-2 e^{-(s-1)}}{(s-1) s}$
2. (a) $\frac{18}{(s+2)^{2}+9}$
(b) $\frac{36}{s^{4}}+\frac{5}{s-3}$
(c) $\frac{4 s-4}{s^{2}+4}$
3. (a) $\frac{7}{2} t^{2}+9 e^{4 t}$
(b) $-\frac{8}{5} e^{-2 t}+\frac{8}{5} e^{3 t}$
(c) $7 \cos (3 t)+\frac{2}{3} \sin (3 t)$
(d) $3 e^{-2 t} \cos (5 t)+\frac{2}{5} e^{-2 t} \sin (5 t)$
4. $y(t)=2 \cos (\sqrt{10} t)-\frac{7}{\sqrt{10}} \sin (\sqrt{10} t)$
5. $Y(s)=\frac{-s+3}{s^{2}-2 s-1}+\frac{12}{\left(s^{2}-2 s-1\right)\left(s^{2}+16\right)}$
6. (a) $Y(s)=\frac{2 s+11}{s^{2}+6 s+13}+\frac{12}{s^{4}\left(s^{2}+6 s+13\right)}$
7. (a) $Y(s)=\frac{2 s-4}{s^{2}+81}$
(b) $y(t)=2 \cos (9 t)-\frac{4}{9} \sin (9 t)$
8. (a) $Y(s)=\frac{-2 s-3}{s^{2}+3 s}$
(b) $y(t)=-1-e^{-3 t}$
9. (a) $Y(s)=\frac{2 s+11}{s^{2}+6 s+13}$
(b) $y(t)=2 e^{-3 t} \cos (2 t)+\frac{5}{2} e^{-3 t} \sin (2 t)$
10. (a) $Y(s)=\frac{2 s-10}{s^{2}-3 s-10}+\frac{5}{s\left(s^{2}-3 s-10\right)}=\frac{2 s^{2}-10 s+5}{s(s-5)(s+2)}$
(b) $y(t)=-\frac{1}{2}+\frac{1}{7} e^{5 t}+\frac{33}{14} e^{-2 t}$
