MAT 275 TEST 2

PRACTICE PROBLEMS

I. The Wronskian.

- 1. Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution.
 - a) t(t-4)y'' + 3ty' + 4y = 2, y(6) = 0, y'(6) = -1
 - b) $(t+1)y'' + ty' + y = \sec t$, y(0) = 2, y'(0) = -1
 - c) $(t-4)y'' + 3ty' + \ln(t)y = \sin t$, y(1) = -2, y'(1) = -1
- 2. Find the Wronskian of the following pair of functions, $\{3e^{2t}, te^{2t}\}$.
- 3. Consider the ODE $t^2y'' + 3ty' + y = 0$ with the initial conditions y(1) = 1, y'(1) = 1. (i) What is the maximum interval of validity, I, of the solution?
 - (ii) Verify that the functions $y_1(t) = t^{-1}$ and $y_2(t) = t^{-1} \ln(t)$ satisfy the ODE for t in the interval I.
 - (iii) Find the Wronskian $W(y_1, y_2)$ to show that $y_1(t)$ and $y_2(t)$ form a fundamental set of solutions.
 - (iv) Solve the initial value problem.
- 4. Suppose $y_1(t) = t$ and $y_2(t) = t^2$ are both solutions of the second order linear equation

y'' + p(t)y' + q(t) = 0. Which of the functions below are guaranteed to also be solutions of the same equation?

A. $y = t^2 - 1$ B. y = 5t C. $y = -9t^2 + 17t$ D. y = 0

5. Which of the following is NOT a fundamental set of solutions for y'' - y = 0?

A.
$$\{e^{t}, e^{-t}\}$$
 B. $\{2e^{t}, 2e^{-t}\}$ C. $\{te^{t}, e^{-t}\}$ D. $\{(e^{t} + e^{-t}), \frac{1}{2}(e^{t} + e^{-t})\}$
E. $\{\frac{1}{2}(e^{t} + e^{-t}), \frac{1}{2}(e^{t} - e^{-t})\}$ F. $\{\frac{1}{2}(e^{t} + e^{-t}), e^{t}\}$

II. HODEs/IVP with constant coefficients.

1. Find a real valued solution to the following initial value problems.

- a. y'' 6y' + 13y = 0, with y(0) = 1, y'(0) = 1.
- b. y'' + 4y' + 4y = 0, with y(0) = 1, y'(0) = -4.
- c. 6y'' + 7y' + 2y = 0, with y(0) = 7, y'(0) = -4.

III. Reduction of order:

1. The ODE $t^2y'' + 3ty' + y = 0$ has a solution $y_1(t) = \frac{1}{t}$ for t > 0. Find the general solution.

2. The ODE $2ty'' - 5y' + \frac{3}{t}y = 0$ has a solution $y_1(t) = t^3$ for t > 0. Find the general solution.

IV. Undetermined coefficients

- 1. Find a particular solution and the general solution of the ODE $y'' + 2y' + y = 3t^2 + 5e^{2t}$.
- 2. Find a particular solution and the general solution of the ODE: $y'' y' 2y = 4\sin(3t)$.
- 3. Find a particular solution and the general solution of the ODE: $y'' y' 12y = 3te^{2t}$.
- 4. Determine a suitable form for the particular solution Y(t), if the method of undetermined coefficients is to be used. You do not need to determine the values of the coefficients.

(i)
$$y'' + 3y' = 2t^2 + t^2e^{-3t} + \sin(3t)$$

- (ii) $y'' + y = t(1 + \sin t)$
- (iii) $y'' 5y' + 6y = e^t \cos(2t) + (3t + 4)e^{2t} \sin(t)$
- (iv) $y'' + 2y' + 2y = 3e^{-t} + 2e^{-t}\cos(t) + 4t^2e^{-t}\sin(t)$
- (v) $y'' 4y' + 4y = 2t^2 + 4te^{2t} + t\sin(2t)$

V. Mass-Spring system

- 1. Solve for the position (in meters) of a mass attached to a spring with **no** damping if the mass is m = 1kg, the spring constant is $k = 4 \frac{N}{m}$, and x(0) = -3m and $x'(0) = 6 \frac{m}{s}$. Also write your answer in $A \cos(\omega t \alpha)$ form.
- 2. Solve for the position (in meters) of a mass attached to a spring with damping if the mass is m = 3kg, the damping constant is $c = 2\frac{N \cdot s}{m}$, the spring constant is $k = \frac{37}{3}\frac{N}{m}$, and x(0) = 3m and $x'(0) = 6\frac{m}{s}$. Also write your answer in $Ae^{-\rho} \cos(\omega t - \alpha)$ form.
- 3. A mass of 0.5 kilograms stretches a spring 0.14 meters. Suppose the mass is displaced an additional 0.06m in the positive (downward) direction and then released with an initial upward velocity of 8m/s The mass is in a medium that exerts a viscous resistance of 12N when the mass has a velocity of 6m/s. Write an IVP for the position x (in meters) of the mass at any time t (in seconds). Use $g = 9.8 \text{ m/s}^2$ for the acceleration due to gravity.
- 4. For the following, choose the best description of the system from the following: Simple Harmonic Motion (SHM) Overdamped (OD) Underdamped (UD) Critically Damped (CD) Beating (B) Resonant (R) Steady-State plus Transient (SST)
 - a. x'' + 4x = 0
 - b. 2x'' + 7x' + 3x = 0
 - c. $y'' + (1.8)^2 y = \cos(2t)$
 - d. $y'' + 4y = \cos(2t)$
 - e. x'' + x' + x = 0
 - f. $y'' + y' + y = \cos(t)$
 - g. x'' + 2x' + x = 0
 - 5. The motion of a force mass-spring system is described by the following IVP:

$$x'' + 9x = \cos(3t)$$
, $x(0) = 0$, $x'(0) = 0$

Explain why you expect resonance to occur.

 \boldsymbol{x}'

6. Solve for the motion of a force mass-spring system is described by the following IVP:

$$x'' + (2.8)^2 x = \cos(3t), \quad x(0) = 0, \quad x'(0) = 0$$

7. A mass m = 1 kg is attached to a spring with constant k = 2 N/m and damping constant γ Ns/m. Determine the value of γ so that the motion is critically damped.

VI. Laplace Transform

1. Use the definition of the Laplace transform to find $F(s) = \mathcal{L}{f(t)}$ for the following functions.

(a)	f(t) =	$= \begin{cases} 3, \\ 0, \end{cases}$	$0 \le 4 \le$	t < 4 t < ∞
(b)	f(t) =	= { ⁰ , 6,	$t < 2 \\ 2 \le 1$	2 t
(c)	f(t) =	$= \begin{cases} 0, \\ 5e^{-1} \end{cases}$	-3t,	$t < 2$ $2 \le t$
(d)	f(t) =	$= \begin{cases} 2e^t\\ 2e, \end{cases}$, t < 1≤	< 1 ≦ <i>t</i>

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}{f(t)}$
	y(t)	<i>Y</i> (<i>s</i>)
1	1	$\frac{1}{s}$
2	t ⁿ	$\frac{n!}{s^{n+1}}$
3	e ^{at}	$\frac{1}{s-a}$
4	cos(bt)	$\frac{s}{s^2+b^2}$
5	sin(bt)	$\frac{b}{s^2+b^2}$
6	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
7	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
8	y'(t)	sY(s) - y(0)
9	y''(t)	$s^2Y(s) - sy(0) - y'(0)$

- 2. Find the Laplace transform of the following functions.
 - (a) $f(t) = 6e^{-2t}\sin(3t)$
 - (b) $f(t) = 6t^3 + 5e^{3t}$
 - (c) $f(t) = 4\cos(2t) 2\sin(2t)$
- 3. Find the inverse Laplace transform:

(a)
$$F(s) = \frac{7}{s^3} + \frac{9}{s-4}$$

(b) $F(s) = \frac{8}{s^2 - s - 6}$
(c) $F(s) = \frac{7s + 2}{s^2 + 9}$
(d) $F(s) = \frac{3s + 8}{s^2 + 4s + 29}$

- 4. The transform of the solution to a certain differential equation is given by $Y(s) = \frac{2s-7}{s^2+10}$. Determine the solution y(t) of the differential equation.
- 5. Suppose that the function y(t) satisfies the DE $y'' 2y' y = 3\sin(4t)$, with initial values y(0) = -1, y'(0) = 1. Find the Laplace transform of y(t) (and solve for Y(s)).
- 6. Consider the following IVP: $y'' + 6y' + 13y = 2t^3$, y(0) = 2, y'(0) = -1. Find the Laplace transform of the solution y(t) (and solve for Y(s))
- 7. Consider the following IVP: y'' + 81y = 0, y(0) = 2, y'(0) = -4.
 - (a) Find the Laplace transform of the solution y(t) (and solve for Y(s)).
 - (b) Invert the transform to solve for y(t).
- 8. Consider the following IVP: y'' + 3y' = 0, y(0) = -2, y'(0) = 3.
 - (a) Find the Laplace transform of the solution y(t) (and solve for Y(s)).
 - (b) Invert the transform to solve for y(t).
- 9. Consider the following IVP: y'' + 6y' + 13y = 0, y(0) = 2, y'(0) = -1.
 - (a) Find the Laplace transform of the solution y(t) (and solve for Y(s)).
 - (b) Invert the transform to solve for y(t).
- 10. Consider the following IVP: y'' 3y' 10y = 5, y(0) = 2, y'(0) = -4.
 - (a) Find the Laplace transform of the solution y(t).
 - (b) Find the solution y(t) by inverting the transform.

ANSWERS TO TEST 2 PRACTICE PROBLEMS

I

- **1.** a) 4 < t or in interval form $(4, \infty)$ b) $-1 < t < \frac{\pi}{2}$ or $\left(-1, \frac{\pi}{2}\right)$ (c) 0 < t < 4 or (0, 4)**2.** $3e^{4t}$
- 3. (i) t > 0

(iii) $W(y_1, y_2) = \frac{1}{t^3}$. Since the Wronskian is nonzero on I, $y_1(t)$ and $y_2(t)$ form a fundamental set of solutions.

(iv)
$$y = \frac{1+2\ln(t)}{t}$$

- 4. By the principle of superposition, B, C, D
- 5. C: te^t is not a solution; D: the two functions are not linearly independent

II.
1. (a)
$$y = -e^{3t} \sin(2t) + e^{3t} \cos(2t)$$

(b) $y(t) = e^{-2t} - 2te^{-2t}$
(c) $y(t) = 3e^{-2t/3} + 4e^{-t/2}$

1.
$$y(t) = \frac{c_1}{t} + c_2 \frac{\ln(t)}{t}$$
 2. $y(t) = c_1 t^3 + c_2 \sqrt{t}$

1.
$$y_p = 3t^2 - 12t + 18 + \frac{5}{9}e^{2t}$$
; general: $y = c_1e^{-t} + c_2te^{-t} + 3t^2 - 12t + 18 + \frac{5}{9}e^{2t}$
2. $y_p = \frac{6}{65}\cos(3t) - \frac{22}{65}\sin(3t)$; general: $y = c_1e^{-t} + c_2e^{2t} + \frac{6}{65}\cos(3t) - \frac{22}{65}\sin(3t)$
3. $y_p = \left(-\frac{3}{10}t - \frac{9}{100}\right)e^{2t}$; general: $y = c_1e^{-3t} + c_2e^{4t} + \left(-\frac{3}{10}t - \frac{9}{100}\right)e^{2t}$
4.
(i) $Y(t) = t(At^2 + Bt + C) + t(Dt^2 + Et + F)e^{-3t} + G\sin(3t) + H\cos(3t)$
(ii) $Y(t) = At + B + t(Ct + D)\sin(t) + t(Et + F)\cos(t)$
(iii) $Y(t) = Ae^t\cos(2t) + Be^t\sin(2t) + (Ct + D)e^{2t}\cos(t) + (Et + F)e^{2t}\sin(t)$
(iv) $Y(t) = Ae^{-t} + t(Bt^2 + Ct + D)e^{-t}\cos(t) + t(Et^2 + Ft + G)e^{-t}\sin(t)$

(v)
$$Y(t) = At^2 + Bt + C + t^2(Dt + E)e^{2t} + (Ft + G)\cos(2t) + (Ht + I)\sin(2t)$$

1.
$$x(t) = -3\cos(2t) + 3\sin(2t) = \sqrt{18}\cos\left(2t - \frac{3\pi}{4}\right)$$

2. $x(t) = 3e^{-t/3}\cos(2t) + \frac{7}{2}e^{-t/3}\sin(2t) = \frac{\sqrt{85}}{2}e^{-t/3}\cos\left(2t - \tan^{-1}\left(\frac{7}{6}\right)\right)$

3. 0.5x'' + 2x' + 35x = 0, x(0) = 0.06, x'(0) = -8

4.

- a. SHM (Undamped)
- b. OD
- c. B
- d. R
- e. Underdamped
- f. SST
- g. CD
- 5. (a) $\omega_0 = 3 = \omega$

6. (a)
$$\omega_0 = 2.8 \approx 3 = \omega$$
 (b) $x(t) = \frac{1}{1.16} (\cos(2.8t) - \cos(3t)) = \frac{25}{29} (\cos(2.8t) - \cos(3t))$
7. $2\sqrt{2}$

VI.
1. (a)
$$\frac{3-3e^{-4s}}{s}$$
 (b) $\frac{6e^{-2s}}{s}$ (c) $\frac{5e^{-2(s+3)}}{s+3}$ (d) $\frac{2s-2e^{-(s-1)}}{(s-1)s}$
2. (a) $\frac{18}{(s+2)^{2}+9}$ (b) $\frac{36}{s^{4}} + \frac{5}{s-3}$ (c) $\frac{4s-4}{s^{2}+4}$
3. (a) $\frac{7}{2}t^{2} + 9e^{4t}$ (b) $-\frac{8}{5}e^{-2t} + \frac{8}{5}e^{3t}$
(c) $7\cos(3t) + \frac{2}{3}\sin(3t)$ (d) $3e^{-2t}\cos(5t) + \frac{2}{5}e^{-2t}\sin(5t)$
4. $y(t) = 2\cos(\sqrt{10}t) - \frac{7}{\sqrt{10}}\sin(\sqrt{10}t)$
5. $Y(s) = \frac{-s+3}{s^{2}-2s-1} + \frac{12}{(s^{2}-2s-1)(s^{2}+16)}$
6. (a) $Y(s) = \frac{2s+11}{s^{2}+6s+13} + \frac{12}{s^{4}(s^{2}+6s+13)}$
7. (a) $Y(s) = \frac{2s-4}{s^{2}+81}$ (b) $y(t) = 2\cos(9t) - \frac{4}{9}\sin(9t)$
8. (a) $Y(s) = \frac{-2s-3}{s^{2}+3s}$ (b) $y(t) = -1 - e^{-3t}$
9. (a) $Y(s) = \frac{2s+11}{s^{2}+6s+13} + \frac{5}{s(s^{2}-3s-10)} = \frac{2s^{2}-10s+5}{s(s-5)(s+2)}$
(b) $y(t) = -\frac{1}{2} + \frac{1}{7}e^{5t} + \frac{33}{14}e^{-2t}$