LIST OF CONCEPTS AND SKILLS FOR TEST 1

The test covers sections 1.1-1.3, 2.1-2.5, 2.7, 3.1, 3.2

Chapter 1

- Know how to sketch (BY HAND) a direction field for a first order ODE, and how to sketch integral curves.
- Know how to find Equilibrium (constant) Solutions of ODEs of the form $y^{\prime}=f(y)$ and how to classify them as stable, unstable or semi-stable.
- Given the slope field for a differential equation, be able to read the long term behavior of the solutions for different initial conditions.
- Know how to verify by substitution that a given function is a solution of a given ODE.
- Given the general solution to an ODE, know how to use initial conditions to find the value of the constant C.
- Know how to classify differential equations by their order and linearity.
- Know how to derive differential equations that model simple applied problems.

Chapter 2

- Know how to use the method of integrating factor to integrate linear first order equations of the form $y^{\prime}+p(t) y=g(t)$. The integrating factor is given by

$$
\mu(t)=e^{\int p(t) d t}
$$

- Know how to solve separable equations. Whenever possible write the solution in explicit form and be able to determine the interval in which the solution is defined.
- Know the Theorems for existence and uniqueness of solutions to first-order initial value problems (Theorem 2.4.1 and Theorem 2.4.2) and how to apply them.
- Be able to set up and solve applied problems such as "mixture" problems, 1-D motion with air resistance and terminal velocity, and problems involving Newtons's Law of Cooling.
- Know the formula for Euler's method and how to use it to derive recursive approximations for a given IVP.

Chapter 3 (3.1)

- A second order linear differential equation in standard form has the form:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

- If $g(t)=0$, it is called homogeneous; otherwise nonhomogeneous.

Linear Homogeneous DEs with constant coefficients. Given the homogeneous ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

with a, b and c constant:

- The characteristic equation is $a r^{2}+b r+c=0$.
- If the roots of the characteristic equation are real and distinct, r_{1} and r_{2}, then the general solution of the homogeneous ODE is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
- Know how to determine the exact solution (solve for c_{1} and c_{2}) of the above when given two initial conditions.

Chapter 3 (3.2) (If on Exam 1)

The Wronskian:

- Know Theorem 3.2.1: Existence and Uniqueness. Consider the Initial Value Problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where $p(t), q(t)$ and $g(t)$ are continuous on an open interval I that contains t_{0}. Then there is exactly one solution of this problem, and the solution exists throughout the interval I.

- Know Theorem 3.2.2: Principle of Superposition. If y_{1} and y_{2} are solutions of the homogeneous differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, so is $c_{1} y_{1}+c_{2} y_{2}$ for any constants c_{1} and c_{2}.
- Know how to find the Wronskian of two functions, y_{1} and y_{2}.
- Know Theorem 3.2.4: Wronskian of Solutions: Given two solutions y_{1} and y_{2} of a homogeneous ODE, always check whether the Wronskian of the two solutions is not everywhere zero. If this is case the two solutions are linearly independent and we say they form a Fudamental Set of Solutions for the ODE. The general solution is given by $c_{1} y_{1}+c_{2} y_{2}$ with c_{1} and c_{2} arbitrary constants.

