FALL 2022

APM 531 (MAT 494)

Mathematical Neuroscience

Instructor: S. M. Baer

Time: 3:00-4:15 Tuesday & Thursday

Location: TBA

Schedule Line #: 81338 (APM 531); 82568 (MAT 494)

Credits: 3

Content: This is an introductory course to equip students with important mathematical tools for studying the neural circuits underlying brain function; to systematically build biophysical concepts for exploring the relation between structure and function in nerve cells and their networks. This is not a seminar course; but rather a self-contained course structured with homework assignments. **Topics:** cable theory and neuronal branching; dendritic spine modeling with applications; Hodgkin Huxley and Hodgkin Huxley-like excitable systems such as Morris-Lecar and FitzHugh-Nagumo models; bursting oscillations in nerve, muscle and secretory cells; bifurcation analysis of excitable systems; synaptic modeling and activity-dependent processes; introduction to modeling neural subcircuits in the outer-plexiform layer of the retina; introduction to neuromorphic computing and modeling.

Prerequisites: Elementary Differential Equations: MAT 275.

(A course in partial differential equations is **NOT** required.)

This **self contained** course is open to graduate (531) and undergraduate (494) students of mathematics, life science, physics, psychology, and engineering. Please email Steven Baer (steven.baer@asu.edu) for further information.