Section 2.4

1. Use the following table to answer question 1.

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
<th>g(x)</th>
<th>f'(x)</th>
<th>g'(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

If \(H(x) = f(x) \cdot g(x) \), what is \(H'(2) \)?

24

2. Given \(f(x) = 5 \csc x \), find a) \(f'(x) \) b) \(f''(x) \).

\(f'(x) = -5 \csc x \cot x \); \(f''(x) = -5(\csc x - 2 \csc^3 x) \)

3. The equation of motion for a particle is \(s(t) = 5 \cos t + 6 \sin t \), \(t \geq 0 \), where \(S \) is measured in centimeters and \(t \) in seconds. Find the velocity function.

\(s'(t) = -5 \sin t + 6 \cos t \)

4. Find the derivative. \(f(x) = x^{10} \cos x \)

\(f'(x) = 10x^9 \cos x - x^{10} \sin x \)

5. Find \(f'(x) \) if \(f(x) = 4x(\sin x) + \cos(x) \)

\(f'(x) = 4(\sin x) + \cos(x) + 4x(\cos(x) - \sin(x)) \)

6. An object with weight \(P \) is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle \(t \) with the plane, then the magnitude of the force is

\(F = \frac{cP}{\csc t + \cos t} \), where \(c \) is a constant called the coefficient of friction. Let \(P = 30 \text{ lb} \) and \(c = 0.5 \).

When (in radians) is the rate of change of \(F \) with respect to \(t \) equal to zero?

\(\arctan 0.5 \)
Section 2.5

7. Find the first derivative of \(y = \tan^4 x \).

\[y' = 4 \tan^3 x \sec^2 x \]

8. Find the equation of the tangent line for \(y = \cos^3(x) \) at \(x = 0 \).

\[y = 1. \]

Use the following table to answer question questions # 9 and # 10.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
<th>(f'(x))</th>
<th>(g'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

9. If \(h(x) = f(g(x)) \), what is \(h'(1) \)?

6

10. If \(H(x) = g(f(x)) \), what is \(H'(3) \)?

3

11. Find the 28th derivative of \(y = \cos(4x) \).

\[y^{(28)} = 4^{28} \cos(4x) \]

12. Find the derivative. \(y = (\sec(x))^4 + \cos(x^5) \)

\[y' = 4(\sec(x))^4 \tan(x) - 5x^4 \sin(x^5) \]

13. Suppose that \(f(x) = \frac{3x}{(2-4x)^4} \). Find the equation of the tangent line of \(f \) at \(x = 1 \).

Round each numerical value to 4 decimal places.

\[y = -1.3125x + 1.5 \]

14. If 1000 dollars is invested at an annual interest rate \(r \) compounded monthly, the amount in the account at the end of 4 years is given by

\[A = 1000 \left(1 + \frac{1}{12}r\right)^{48} \]

Find the rate of change of the amount \(A \) with respect to the rate \(r \) when \(r = 4\% \)

4677.204
Section 2.6

15. Find the slope of the tangent line to the curve \(5xy^5 + 3xy = 24\) at \((3,1)\) exactly.
\[
-\frac{2}{21}
\]

16. For the equation given below, evaluate \(y'\) at the point \((2,2)\) to six decimal places.
\[(4x - y)^4 + 4y^3 = 1328.
\]
\[4.235294\]

17. Find the slope of the tangent line to the curve \(5 \sin x + 4 \cos y - 4 \sin x \cos y + x = 7\pi\) at \((7\pi, \frac{3\pi}{2})\).
\[1\]

Section 2.7

18. A street light is mounted on a 16 ft tall pole. A 6 ft woman walks away in a straight path from the pole at a speed of 4 ft/sec. How fast is the tip of the woman’s shadow changing when she is 50 ft from the base of the pole?
\[6.4 \text{ ft/sec}\]

19. If \(x^2 + 3xy + y^5 = 39\), and \(\frac{dx}{dt} = -2\) when \(x = 1\) and \(y = 2\), what is \(\frac{dy}{dt}\) then?
\[16/83\]

20. The radius of a spherical balloon is increasing at a rate of 2 cm per min. How fast is the volume changing when the radius is 12 cm? Round your answer to six decimal places.
\[3619.114737\]
Section 2.8

21. Use a linear approximation to approximate \(\sqrt{49.2} \). Write your answer to five decimal places.
 7.01429

22. Let \(y = 4\sqrt{x} \). To five decimal places: Find the change in \(y \), \(\Delta y \) when \(x = 4 \) and \(\Delta x = 0.2 \).
 0.19756

23. Let \(y = 4\sqrt{x} \). To five decimal places: Find the differential \(dy \) when \(x = 4 \) and \(dx = 0.2 \).
 0.2

24. Find linear approximation of the function \(f(x) = \frac{1}{x} \) and use it to approximate \(\frac{1}{1.04} \).
 0.96

25. The radius of a circular disk is given as 24 cm with a maximal error in measurement of 0.2 cm.
 a) Use differentials to estimate the maximum error.
 b) What is the relative error?
 Round each numerical value to 7 decimal places, except \(\pi \). Leave \(\pi \) as \(\pi \).
 \(9.6\pi; \ 0.0166667 \)

Section 3.1

26. Find the exact limit: \(\lim_{x \to \infty} \frac{2\sqrt{11}(8)^x + 15,000}{7(8)^x - 9} \).
 \(\frac{2\sqrt{11}}{7} \)

27. Find the exact limit: \(\lim_{x \to -\infty} \frac{9}{5^x - 7} \).
 \(-\frac{9}{7} \)

28. The number, \(N \), of people who have heard a rumor spread by mass media at time, \(t \), is given by \(N(t) = a(1 - e^{-kt}) \).
 There are 200000 people in the population who hear the rumor eventually. 5 percent of them heard it on the first day. Find \(a \) and \(k \), assuming \(t \) is measured in days.
 \(a = 200000; \ k = -\ln(1 - 5/100) \)
Section 3.2

29. For the function $f(x) = 3x + 6x^{15}$, find the derivative of the inverse function of f at $c = -9$. In other words, find $(f^{-1})'(c)$ with $c = -9$.

\[
\frac{1}{93}
\]

30. Find the exact limit:
 a) $\lim_{x \to \infty} [\ln(5 + 3x) - \ln(5 + 2x)]$
 b) $\lim_{x \to 0^+} [\ln 5 \sin x]$
 Round to six decimal places.

$0.405465; \ -\infty$

Section 3.3

31. Differentiate the function $f(x) = x^{6x}$.

$f'(x) = 6x^{6x} \ln(x) + 1$

32. Let $f(x) = -16 \ln(\cos x)$. Find the second derivative of $f(x)$.

$f''(x) = 16 \sec^2 x$

33. Let $f(x) = \ln[(x^6 + 5)^9(x^3 + 1)^{10}]$. Find $f'(x)$.

$f'(x) = \frac{6}{x} + \frac{9}{x + 5} + \frac{30x^2}{x^3 + 1}$

Section 3.5

34. Find $f'(x)$ where $f(x) = \arcsin^6(2x + 4)$.

$f'(x) = \frac{12 \arcsin^6(2x+4)}{\sqrt{1-(2x+4)^2}}$

35. Let $f(x) = 2x^2 \tan^{-1}(8x^2)$. Find $f'(x)$.

$f'(x) = 4x \tan^{-1}(8x^2) + \frac{32x^3}{1+64x^4}$
Section 3.7

36. Use L’Hospital’s Rule to evaluate the limit exactly: \(\lim_{x \to 0^+} 4 \sin(x) \ln(x) \)

0

37. Use L’Hospital’s Rule to evaluate the limit exactly: \(\lim_{x \to 0} \frac{6^x - 8^x}{x} \).

\(\ln \left(\frac{3}{4} \right) \)

38. Use L’Hospital’s Rule to evaluate the limit exactly: \(\lim_{x \to \infty} (1 + \frac{8}{x})^{10} \).

\(e^{4/5} \)

39. Use L’Hospital’s Rule to evaluate the limit exactly: \(\lim_{x \to \frac{\pi}{2}} (7 \cos(-5x) \sec(-7x)) \).

−5