

Student: Brian Sweeney Course: APM 503 Program: Mathematics MA Instructor: Horst Thieme Date: Fall 2019

APM 503 Project: Proofs Involving Inner Product Spaces Brian Sweeney

A.1.1. (An inner product is uniquely determined by the norm) Let X be a vector space with inner product $\langle \cdot, \cdot \rangle$ and associated norm $|| \cdot ||$.

(a) Show that $\langle u, v \rangle + \langle v, u \rangle = \frac{1}{2}(||u+v||^2 - ||u-v||^2).$

Proof. Since $\mathbb{O} \in X$, let $u, v \in X$. Since $|| \cdot ||$ on X is induced by an inner product, $||u||^2 = \langle u, u \rangle$ for $u \in X$.

Then,
$$\frac{1}{2}(||u+v||^2 - ||u-v||^2)$$
$$= \frac{1}{2}(\langle u+v, u+v \rangle - \langle u-v, u-v \rangle)$$
$$= \frac{1}{2}(\langle u, u \rangle + \langle v, u \rangle + \langle v, u \rangle + \langle v, v \rangle - \langle u, u \rangle + \langle v, u \rangle + \langle u, v \rangle - \langle v, v \rangle)$$
$$= \frac{1}{2}(2\langle v, u \rangle + 2\langle u, v \rangle)$$
$$= \langle u, v \rangle + \langle v, u \rangle$$

Thus, $\langle u, v \rangle + \langle v, u \rangle = \frac{1}{2}(||u+v||^2 - ||u-v||^2).$

(b) Show that in a real inner product space $\langle u, v \rangle = \frac{1}{4}(||u+v||^2 - ||u-v||^2).$

Proof. Since $\mathbb{O} \in X$, let $u, v \in X$. Since $|| \cdot ||$ on X is induced by an inner product, $||u||^2 = \langle u, u \rangle$ for $u \in X$. From the above proof (part (a)), we know that $\langle u, v \rangle + \langle v, u \rangle = \frac{1}{2}(||u+v||^2 - ||u-v||^2)$.

So,
$$\frac{1}{4}(||u+v||^2 - ||u-v||^2) = \frac{1}{2}(\frac{1}{2}(||u+v||^2 - ||u-v||^2))$$

= $\frac{1}{2}(\langle u, v \rangle + \langle v, u \rangle).$

Since this is a real inner product space, $\langle u, v \rangle = \langle v, u \rangle$, so

$$\frac{1}{2}(\langle u, v \rangle + \langle v, u \rangle) = \frac{1}{2}(\langle u, v \rangle + \langle u, v \rangle) = \langle u, v \rangle$$

Thus, $\frac{1}{4}(||u+v||^2 - ||u-v||^2) = \langle u, v \rangle.$

(c) Show that, if X is a complex inner product space,

$$\langle u, v \rangle - \langle v, u \rangle = \frac{i}{2} (||u + iv||^2 - ||u - iv||^2)$$

and

$$\langle u, v \rangle = \frac{1}{4} (||u+v||^2 - ||u-v||^2 + i||u+iv||^2 - i||u-iv||^2)$$

Proof. Since $\mathbb{O} \in X$, let $u, v \in X$.

Then,
$$\frac{i}{2}(||u+iv||^2 - ||u-iv||^2)$$

$$= \frac{i}{2}(\langle u+iv, u+iv \rangle - \langle u-iv, u-iv \rangle)$$

$$= \frac{i}{2}(\langle u, u \rangle + \langle iv, u \rangle + \langle u, iv \rangle + \langle iv, iv \rangle - \langle u, u \rangle + \langle iv, u \rangle + \langle u, iv \rangle - \langle iv, iv \rangle)$$

$$= \frac{i}{2}(2\langle iv, u \rangle + 2\langle u, iv \rangle)$$

$$= i\langle iv, u \rangle + i\langle u, iv \rangle$$

$$= i^2 \langle v, u \rangle + \langle iu, iv \rangle$$

$$= \langle u, v \rangle - \langle v, u \rangle.$$

Thus, $\langle u, v \rangle - \langle v, u \rangle = \frac{i}{2} (||u + iv||^2 - ||u - iv||^2).$

Since $\mathbb{O} \in X$, let $u, v \in X$. Then,

$$\frac{1}{4}(||u+v||^2 - ||u-v||^2 + i||u+iv||^2 - i||u-iv||^2) = \frac{1}{4}(||u+v||^2 - ||u-v||^2) + \frac{i}{4}(||u+iv||^2 - i||u-iv||^2) + \frac{i}{4}(||u-iv||^2) + \frac{i}{4}(||u+iv||^2 - i||u-iv||^2) + \frac{i}{4}(||u-iv||^2) + \frac{i}{4}(||u-iv||$$

. Using the result from (a), that $\langle u, v \rangle + \langle v, u \rangle = \frac{1}{2}(||u + v||^2 - ||u - v||^2)$, and the result above, that $\langle u, v \rangle - \langle v, u \rangle = \frac{i}{2}(||u + iv||^2 - ||u - iv||^2)$, we have the following:

$$\begin{aligned} &\frac{1}{4}(||u+v||^2 - ||u-v||^2) + \frac{i}{4}(||u+iv||^2 - i||u-iv||^2) \\ &= \frac{1}{2}(\langle u,v \rangle + \langle v,u \rangle) + \frac{1}{2}(\langle u,v \rangle - \langle v,u \rangle) \\ &= \langle u,v \rangle. \end{aligned}$$

Thus, $\frac{1}{4}(||u+v||^2 - ||u-v||^2 + i||u+iv||^2 - i||u-iv||^2) = \langle u, v \rangle.$

A.1.2. A real $n \ge n$ matrix $A = (\alpha_{ij})$ is called symmetric if $\alpha_{ij} = \alpha_{ji}$ for all i, j = 1, ..., n.

(a) Show that a real $n \ge n$ matrix A is symmetric if and only if $x \cdot (Ay) = (Ax) \cdot y$ for all $x, y \in \mathbb{R}^n$.

Proof.

 (\rightarrow) Suppose that a real $n \ge n$ matrix A is symmetric. So, $\alpha_{ij} = \alpha_{ji}$ for all i, j = 1, ..., n. Let $x, y \in \mathbb{R}^n$; $x = (x_i)$ and $y = (y_i)$, with i = 1, ..., n.

Then, $Ay = (b_i)$, where $b_i = \sum_{j=1}^n \alpha_{ij} y_j$ for i = 1, ..., n. Thus,

$$x \cdot (Ay) = \sum_{i=1}^{n} x_i b_i$$
$$= \sum_{i=1}^{n} x_i (\sum_{j=1}^{n} \alpha_{ij} y_j)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \alpha_{ij} y_j.$$

Now, we can change the order of the summations and factor out y_i :

$$x \cdot (Ay) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \alpha_{ij} y_j$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} x_i \alpha_{ij} y_j$$
$$= \sum_{j=1}^{n} y_j \sum_{i=1}^{n} x_i \alpha_{ij}.$$

Since $\alpha_{ij} = \alpha_{ji}$ for all i, j = 1, ..., n,

$$\sum_{j=1}^{n} y_j \sum_{i=1}^{n} x_i \alpha_{ij} = \sum_{j=1}^{n} y_j \sum_{i=1}^{n} x_i \alpha_{ji}$$
$$= y \cdot (Ax)$$
$$= (Ax) \cdot y$$

where the last equality follows from \mathbb{R}^n being a real inner product space. Since $x, y \in \mathbb{R}^n$ were arbitrary, $x \cdot (Ay) = (Ax) \cdot y$ for all $x, y \in \mathbb{R}^n$.

 (\leftarrow) Suppose $x \cdot (Ay) = (Ax) \cdot y$ for all $x, y \in \mathbb{R}^n$. Denote $A = (\alpha_{ij})$, and let $x = (x_i)$

and $y = (y_i)$ be vectors in \mathbb{R}^n . Then, $Ay = (b_i)$ where $b_i = \sum_{j=1}^n \alpha_{ij} y_j$ for i = 1, ..., n, so

$$x \cdot (Ay) = \sum_{i=1}^{n} x_i b_i$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \alpha_{ij} y_j$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i y_j.$$

Also, $Ax = (c_i)$, where $c_i = \sum_{j=1}^n \alpha_{ij} x_j$ for i = 1, ..., n and

$$(Ax) \cdot y = \sum_{i=1}^{n} c_i y_i$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_j y_i.$$

Changing the indices on this second inner product to match $x \cdot (Ay)$, gives that

$$(Ax) \cdot y = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_j y_i$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{ji} x_i y_j$$

So, since $x \cdot (Ay) = (Ax) \cdot y$, we have that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i y_j = \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{ji} x_i y_j \tag{1}$$

for all $x, y \in \mathbb{R}^n$. Let $a, b \in \{1, ..., n\}$ and pick $x, y \in \mathbb{R}^n, x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, such that $x_a = 1$ and $x_i = 0$ for $i \neq a$, and $y_b = 1$ and $y_j = 0$ for $j \neq b$. Then, this equality gives us that $\alpha_{ab} = \alpha_{ba}$. Since (1) holds for all $x, y \in \mathbb{R}^n$, $\alpha_{ab} = \alpha_{ba}$ holds for all $a, b \in \{1, ..., n\}$ by picking $x, y \in \mathbb{R}^n$ in a similar manner. Thus, $\alpha_{ij} = \alpha_{ji}$ for all $i, j \in \{1, ..., n\}$, so A is symmetric.

(b) A symmetric matrix A is called positive definite if $x \cdot (Ax) > 0$ for all $x \in \mathbb{R}^n$, $x \neq 0$. Show: A function \langle , \rangle from $\mathbb{R}^n \ge \mathbb{R}^n$ into \mathbb{R} is an inner product on \mathbb{R}^n if and only if there exists a positive definite symmetric matrix A such that $\langle x, y \rangle = x \cdot (Ay)$ for all $x, y \in \mathbb{R}^n$.

Proof.

 (\rightarrow) Suppose \langle,\rangle from $\mathbb{R}^n \ge \mathbb{R}^n$ into \mathbb{R} is an inner product on \mathbb{R}^n . Let $x, y \in \mathbb{R}^n$, where $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$. Then, $x = x_1e_1 + ... + x_ne_n = \sum_{i=1}^n x_ie_i$ and $y = y_1e_1 + ... + y_ne_n = \sum_{i=1}^n y_ie_i$, where $e_1, ..., e_n$ denote the standard basis of \mathbb{R}^n . By the distributive law, we have that

$$\langle x, y \rangle = \langle \sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x_i e_i, y_j e_j \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \langle e_i, e_j \rangle.$$

Pick A to be a matrix such that $\alpha_{ij} = \langle e_i, e_j \rangle$ for i, j = 1, ..., n.

Then, $\langle x, y \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \alpha_{ij} = x \cdot (Ay)$. Now, we must show that A is symmetric and positive definite.

By the symmetry of the inner product, $\langle x, y \rangle = \langle y, x \rangle$, so $x \cdot (Ay) = \langle x, y \rangle = \langle y, x \rangle = y \cdot (Ax)$. By part (a), A is then a symmetric matrix. By the positivity of \langle , \rangle , we have that $\langle u, u \rangle > 0$ for all $u \in \mathbb{R}^n$, $u \neq \mathbb{O}$, so A is positive definite. Therefore, A is a positive definite matrix that satisfies $\langle x, y \rangle = x \cdot (Ay)$ for all $x, y \in \mathbb{R}^n$.

 (\leftarrow) Suppose there exists a positive definite matrix A such that $\langle x, y \rangle = x \cdot (Ay)$ for all $x, y \in \mathbb{R}^n$. Let $x, y, z \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$.

(i) Since A is symmetric, $x \cdot (Ay) = (Ax) \cdot y$ by part (a). Also, since the Euclidean inner product is an inner product on \mathbb{R}^n , \cdot is symmetric so $(Ax) \cdot y = y \cdot (Ax)$. Thus, $\langle x, y \rangle = x \cdot (Ay) = y \cdot (Ax) = \langle y, x \rangle$, so \langle , \rangle is symmetric.

(ii) Since the Euclidean inner product is an inner product on \mathbb{R}^n , $(\alpha x) \cdot (Ay) = \alpha [x \cdot (Ay)]$. So, $\langle \alpha x, y \rangle = (\alpha x) \cdot (Ay) = \alpha [x \cdot (Ay)] = \alpha \langle x, y \rangle$, so the associate law holds.

(iii) Again, since \cdot is an inner product on \mathbb{R}^n , we have $\langle x + y, z \rangle = (x + y) \cdot (Az) = [x \cdot (Az)] + [y \cdot (Az)] = \langle x, z \rangle + \langle y, z \rangle$. Thus the distributive law holds for \langle , \rangle .

(iv) Since A is a positive definite matrix, $u \cdot (Au) > 0$ for all $u \in \mathbb{R}^n$, $u \neq \mathbb{O}$. Let $x \in \mathbb{R}^n$, $x \neq \mathbb{O}$. Then, $\langle x, x \rangle = x \cdot (Ax) > 0$, so \langle , \rangle is positive definite. Thus, \langle , \rangle is an inner product on \mathbb{R}^n .

A.1.3. Let A be a positive definite symmetric $n \ge n$ matrix and \cdot denote the inner product on \mathbb{R}^n . Show: $|x \cdot (Ay)|^2 \le [x \cdot (Ax)][y \cdot (Ay)]$ for all $x, y \in \mathbb{R}^n$ with equality holding if and only if x and y are linearly dependent.

Proof.

Let A be a positive definite symmetric $n \ge n$ matrix. To prove this inequality, we will first show that \langle , \rangle defined by $\langle x, y \rangle = x \cdot (Ay)$ is an inner product on \mathbb{R}^n . Let $x, y, z \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

(i) We have that $\langle x, y \rangle = x \cdot (Ay) = y \cdot (Ax) = \langle y, x \rangle$ from the result of A.1.2(a) and the commutativity of the inner product on \mathbb{R} . So, $\langle x, y \rangle = \langle y, x \rangle$.

(ii) We can use the fact that \cdot is an inner product on \mathbb{R}^n to rewrite $\langle \alpha x, y \rangle$ as follows: $\langle \alpha x, y \rangle = (\alpha x) \cdot (Ay) = \alpha [x \cdot (Ay)] = \alpha \langle x, y \rangle$. So, $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.

(iii) Consider $\langle x + y, z \rangle = (x + y) \cdot (Az)$. Again, since \cdot is an inner product on \mathbb{R}^n ,

$$(x+y) \cdot (Az) = [x \cdot (Az)] + [y \cdot (Az)]$$
$$= \langle x, z \rangle + \langle y, z \rangle.$$

Thus, $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

(iv) Let $w \in \mathbb{R}^n, w \neq \mathbb{O}$. Since A is positive definite, $\langle w, w \rangle = w \cdot (Aw) > 0$ by definition. Thus, $\langle w, w \rangle > 0$ for $w \neq \mathbb{O}$.

Therefore, we have that \langle, \rangle is an inner product on \mathbb{R}^n . Applying the Cauchy-Schwarz Inequality (Theorem A.2), we have that for all $x, y \in \mathbb{R}^n$,

$$\begin{aligned} |\langle x, y \rangle|^2 &\leq \langle x, x \rangle \langle y, y \rangle \text{ or equivalently,} \\ x \cdot (Ay)|^2 &\leq [x \cdot (Ax)][y \cdot (Ay)], \end{aligned}$$

with equality if and only if x and y are linearly dependent.

A.1.4. Consider $\ell^2 = \{x = (x_n) \in \mathbb{C}^{\mathbb{N}}; ||x||_2 < \infty\}$ where

$$||x||_2^2 = \sum_{n=1}^{\infty} |x_n|^2$$

Show:

(a) For each $x = (x_n)$ and $y = (y_n)$ in ℓ^2 , the series

$$\sum_{k=1}^{\infty} x_k \bar{y}_k =: \langle x, y \rangle$$

converges in \mathbb{C} (with absolute value) and defines an inner product on ℓ^2 .

Proof.

We first show that ℓ^2 is a linear subspace of $\mathbb{C}^{\mathbb{N}}$. Let $x, y \in \ell^2$ and $\alpha \in \mathbb{C}$.

(i) Since $||x||_2 < \infty$, there exists $c \in \mathbb{R}$, c > 0 such that $||x||_2 = \sqrt{\sum_{n=1}^{\infty} |x_n|^2} < c$, so $||x||_2^2 = \sum_{n=1}^{\infty} |x_n|^2 < c^2$. So, for all $m \in \mathbb{N}$, $\sum_{n=1}^{m} |x_n|^2 < c^2$. Then, for all $m \in \mathbb{N}$,

$$\sum_{n=1}^{m} |\alpha x_n|^2 = \sum_{n=1}^{m} |\alpha|^2 |x_n|^2$$
$$= |\alpha|^2 \sum_{n=1}^{m} |x_n|^2$$
$$< |\alpha|^2 c^2.$$

Since this is true for all $m \in \mathbb{N}$, $\sum_{n=1}^{\infty} |\alpha x_n|^2 < |\alpha|^2 c^2$, so $||\alpha x||_2 = \sqrt{\sum_{n=1}^{\infty} |\alpha x_n|^2} < \sqrt{|\alpha|^2 c^2} < \infty$, meaning that $\alpha x \in \ell^2$.

(ii) Since $||x||_2 < \infty$ and $||y||_2 < \infty$, there exists $c, d \in \mathbb{R}$, c, d > 0 such that $||x||_2 = \sqrt{\sum_{n=1}^{\infty} |x_n|^2} < c$ and $||y||_2 = \sqrt{\sum_{n=1}^{\infty} |y_n|^2} < d$, so $||x||_2^2 = \sum_{n=1}^{\infty} |x_n|^2 < c^2$ and $||y||_2^2 = \sum_{n=1}^{\infty} |y_n|^2 < d^2$. Then, for all $m \in \mathbb{N}$, $\sum_{n=1}^{m} |x_n|^2 < c^2$ and $\sum_{n=1}^{m} |y_n|^2 < d^2$. So, for all

 $m \in \mathbb{N},$

$$\sum_{n=1}^{m} |x_n + y_n|^2 = \sum_{n=1}^{m} |x_n + y_n| |x_n + y_n|$$

$$\leq \sum_{n=1}^{m} |x_n| (|x_n + y_n|) + |y_n| (|x_n + y_n|)$$

$$\leq \sum_{n=1}^{m} |x_n| (|x_n| + |y_n|) + |y_n| (|x_n| + |y_n|)$$

$$= \sum_{n=1}^{m} |x_n|^2 + 2|x_n| |y_n| + |y_n|^2$$

$$< c^2 + 2cd + d^2$$

Since this is true for all $m \in \mathbb{N}$, $\sum_{n=1}^{\infty} |x_n + y_n|^2 < c^2 + 2cd + d^2$, so $||x+y||_2 = \sqrt{\sum_{n=1}^{\infty} |x_n + y_n|^2} < \sqrt{c^2 + 2cd + d^2} < \infty$, meaning that $x + y \in \ell^2$. Thus, ℓ^2 is a linear subspace of $\mathbb{C}^{\mathbb{N}}$.

Now we must show that the series

$$\sum_{k=1}^{\infty} x_k \bar{y}_k =: \langle x, y \rangle$$

converges in \mathbb{C} for each $x = (x_n)$ and $y = (y_n)$. Let $x, y \in \ell^2$, so $x = (x_n)$ and $y = (y_n)$ since x, y are sequences. Also, $||x||_2 < \infty$ and $||y||_2 < \infty$ since $x, y \in \ell^2$. So, there exists $c, d \in \mathbb{R}$, c, d > 0 such that $||x||_2 = \sqrt{\sum_{n=1}^{\infty} |x_n|^2} < c$ and $||y||_2 = \sqrt{\sum_{n=1}^{\infty} |y_n|^2} < d$, and by extension, $||x||_2^2 = \sum_{n=1}^{\infty} |x_n|^2 < c^2$ and $||y||_2^2 = \sum_{n=1}^{\infty} |y_n|^2 < d^2$. So, for all $m \in \mathbb{N}$, $\sum_{n=1}^{m} |x_n|^2 < c^2$ and $\sum_{n=1}^{m} |y_n|^2 < d^2$. Then, by the triangle inequality, we have

$$\sum_{k=1}^{m} x_k \bar{y}_k | \le \sum_{k=1}^{m} |x_k \bar{y}_k|$$

= $\sum_{k=1}^{m} |x_k| |\bar{y}_k|$
= $\sum_{k=1}^{m} |x_k| |y_k|$

Note that we can bound $\sum_{k=1}^{m} |x_k|| |y_k|$ by looking at the relation between $|x_k|$ and $|y_k|$ for each k = 1, ..., m. If $|x_k| \leq |y_k|$ for a given k = 1, ..., m, then, $|x_k|| |y_k| \leq |y_k|^2$. If $|x_k| > |y_k|$ for a given k = 1, ..., m, then, $|x_k|| |y_k| < |x_k|^2$. So, combining these two, we get that $\sum_{k=1}^{m} |x_k|| |y_k| \leq \sum_{k=1}^{m} (|x_k|^2 + |y_k|^2) < c^2 + d^2$ for all $m \in \mathbb{N}$. Thus, $|\sum_{k=1}^{m} x_k \bar{y}_k| \leq \sum_{k=1}^{m} |x_k \bar{y}_k| \leq c^2 + d^2$ for all $m \in \mathbb{N}$. So, the partial sums $|\sum_{k=1}^{m} x_k \bar{y}_k|$, which is a non-negative series, is bounded for all $m \in \mathbb{N}$. Thus $|\sum_{k=1}^{\infty} x_k \bar{y}_k| < c^2 + d^2$, meaning that

 $|\sum_{k=1}^{\infty} x_k \bar{y}_k|$ converges in \mathbb{C} with the absolute value by Theorem 2.38. Now, we must prove that \langle, \rangle defines an inner product on the vector space ℓ^2 .

(i) Let $x, y \in \ell^2$. Note that $\langle y, x \rangle$ exists since $x, y \in \mathbb{C}^{\mathbb{N}}$, so $\sum_{k=1}^{\infty} y_k \bar{x}_k$ converges. Then, we can apply the complex conjugation over the sum as follows:

$$\overline{\langle y, x \rangle} = \overline{\langle y, x \rangle}$$
$$= \overline{\sum_{k=1}^{\infty} y_k \bar{x_k}}$$
$$= \sum_{k=1}^{\infty} \bar{y_k} x_k$$
$$= \sum_{k=1}^{\infty} x_k \bar{y_k}$$
$$= \langle x, y \rangle.$$

Thus, $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

(ii) Let $x, y \in \ell^2$ and $\alpha \in \mathbb{C}$. Since $\sum_{k=1}^{\infty} x_k \bar{y}_k =: \langle x, y \rangle$ converges, we have that

$$\alpha \langle x, y \rangle = \alpha \sum_{k=1}^{\infty} x_k \bar{y_k}$$
$$= \sum_{k=1}^{\infty} \alpha x_k \bar{y_k}$$
$$= \langle \alpha x, y \rangle.$$

Thus, the associative law holds.

(iii) Let $x, y, z \in \ell^2$. Since $\sum_{k=1}^{\infty} x_k \bar{z}_k =: \langle x, z \rangle$ converges and $\sum_{k=1}^{\infty} y_k \bar{z}_k =: \langle y, z \rangle$ converges, we have that

$$\langle x, z \rangle + \langle y, z \rangle = \sum_{k=1}^{\infty} x_k \bar{z_k} + \sum_{k=1}^{\infty} y_k \bar{z_k}$$
$$= \sum_{k=1}^{\infty} (x_k + y_k) \bar{z_k}$$
$$= \langle x + y, z \rangle$$

Thus, the distributive law holds for \langle , \rangle .

(iv) Let $x \in \ell^2$ such that $x = (x_n)$ is not the zero sequence. Then, $\langle x, x \rangle = \sum_{k=1}^{\infty} x_k \bar{x}_k$ since this series converges in \mathbb{C} with the absolute value. Since $x = (x_n)$ is not the zero sequence, there exists some $j \in \mathbb{N}$ such that $x_j \neq 0$. So, $\langle x, x \rangle = \sum_{k=1}^{\infty} x_k \bar{x}_k \geq x_j \bar{x}_j > 0$. Thus, \langle , \rangle is positive definite. Therefore, the series defines an inner product on ℓ^2 .

(b) ℓ^2 with this inner product is a Hilbert space.

Proof.

Let $(x_n(k))_{k\in\mathbb{N}}$ be a Cauchy sequence in ℓ^2 , with k being the index for the sequence x_n (So, x_n is a sequence in ℓ^2 and for a fixed n, $(x_n(k))_{k\in\mathbb{N}} \in \ell^2$). Let $\epsilon > 0$. Then, there exists $N \in \mathbb{N}$ such that for all $n, m \ge N$, $||x_n - x_m||_2 < \sqrt{\frac{\epsilon}{2}}$, so $||x_n - x_m||_2^2 < \frac{\epsilon}{2}$. We also have that $||x_n - x_m||_2^2 = \sum_{k=1}^{\infty} |x_n(k) - x_m(k)|^2$, so $\epsilon > ||x_n - x_m||_2^2 \ge |x_n(k) - x_m(k)|$ for any $k \in \mathbb{N}$ and $n, m \ge N$. This implies that (x_n) is a uniform Cauchy sequence on \mathbb{N} . By Remark 2.21, $(x_n(k))$ is a Cauchy sequence in \mathbb{C} . Since \mathbb{C} with the absolute value is a complete metric space, for each $k \in \mathbb{N}$, there exists $z(k) \in \mathbb{C}$ such that $x_n(k) \to z(k)$ as $n \to \infty$.

Consider the sequence $z = (z(k))_{k \in \mathbb{N}}$. Let $j \in \mathbb{N}$. Since (x_n) is a Cauchy sequence, there exists $M \in \mathbb{N}$ such that for all $n, m \geq M$, $||x_n - x_m||_2 < \frac{\epsilon}{2}$. So, $\sqrt{\sum_{k=1}^j |x_n(k) - x_m(k)|^2} \leq \sqrt{\sum_{k=1}^\infty |x_n(k) - x_m(k)|^2} < \frac{\epsilon}{2}$. Since $x_n(k) \to z(k)$ as $n \to \infty$ for each $k \in \mathbb{N}$, there exists some $m_{kj} \in \mathbb{N}$ such that $|x_n(k) - z(k)| < \frac{\epsilon}{2\sqrt{j}}$ for all $n \geq m_{kj}$. So, $\sum_{k=1}^j |x_n(k) - z(k)|^2 < \frac{\epsilon^2}{4}$, and $\sqrt{\sum_{k=1}^j |x_n(k) - z(k)|^2} < \frac{\epsilon}{2}$ for all $n \geq m_{kj}$. Let $m \geq \max\{m_{kj}, M\}$. Then for all $j \in \mathbb{N}$ and $n \geq M$, we have

$$\sqrt{\sum_{k=1}^{j} |x_n(k) - z(k)|^2} = \sqrt{\sum_{k=1}^{j} |x_n(k) - x_m(k) + x_m(k) - z(k)|^2}$$

$$\leq \sqrt{\sum_{k=1}^{j} |x_n(k) - x_m(k)|^2} + \sqrt{\sum_{k=1}^{j} |x_m(k) - z(k)|^2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since this holds for all $j \in \mathbb{N}$, $\sqrt{\sum_{k=1}^{\infty} |x_n(k) - z(k)|^2} < \epsilon$, meaning that $||x_n - z||_2 = \sqrt{\sum_{k=1}^{\infty} |x_n(k) - z(k)|^2} < \epsilon$ for all $n \ge M$. Thus, since M does not depend on k, (x_n) converges uniformly to z.

Now, we must show that $z \in \ell^2$. Consider $\sum_{k=1}^m |z(k)|^2 = \sum_{k=1}^m |\lim_{n\to\infty} x_n(k)|^2$. Since $(x_n(k))_{k\in\mathbb{N}}$ is a Cauchy sequence in ℓ^2 , $(x_n(k))_{k\in\mathbb{N}}$ is bounded in ℓ^2 . So, there exists c > 0 such that for all $n \in \mathbb{N}$, $||x_n||_2 = \sqrt{\sum_{k=1}^\infty |x_n(k)|^2} < c$. Then, $||x_n||_2^2 = \sum_{k=1}^\infty |x_n(k)|^2 < c^2$. So, for all $m \in \mathbb{N}$ and $n \in \mathbb{N}$, $\sum_{k=1}^m |x_n(k)|^2 < c^2$. Then, by the definition of limit, for all $m \in \mathbb{N}$, $\sum_{k=1}^m |z(k)|^2 = \sum_{k=1}^m |\lim_{n\to\infty} x_n(k)|^2 \leq c^2$. Since this holds for all $m \in \mathbb{N}$, by

Theorem 2.38, we have that $\sum_{k=1}^{\infty} |z(k)|^2$ converges. So, $||z||_2^2 = \sum_{k=1}^{\infty} |z(k)|^2 < \infty$, meaning that $||z||_2 < \infty$. Thus, $z \in \ell^2$. Therefore, $x_n \to z$ as $n \to \infty$ and $z \in \ell^2$, so ℓ^2 is a Hilbert space.

A.1.5. Let X be an inner product space over K and (x_n) , (y_n) be Cauchy sequences in X. Show: The sequence $(\langle x_n, y_n \rangle)$ converges in K.

Proof.

Let $\epsilon > 0$. Since (x_n) , (y_n) are Cauchy sequences in X, there exists $N, M \in \mathbb{N}$ such that $||x_n - x_m|| < \epsilon$ for all $n, m \ge \mathbb{N}$ and $||y_n - y_m|| < \epsilon$ for all $n, m \ge M$. So, we have that $||x_n - x_m|| \to 0$ as $n, m \to \infty$ and $||y_n - y_m|| \to 0$ as $n, m \to \infty$. Note that for all $n, m \in \mathbb{N}$,

$$\langle x_n, y_n \rangle - \langle x_m, y_m \rangle = \langle x_n, y_n \rangle - \langle x_m, y_n \rangle + \langle x_m, y_n \rangle - \langle x_m, y_m \rangle = \langle x_n - x_m, y_n \rangle + \langle x_m, y_n - y_m \rangle.$$

So, $|\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| = |\langle x_n - x_m, y_n \rangle + \langle x_m, y_n - y_m \rangle|$. By the triangle inequality and the Cauchy-Schwarz inequality,

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| &= |\langle x_n - x_m, y_n \rangle + \langle x_m, y_n - y_m \rangle| \\ &\leq |\langle x_n - x_m, y_n \rangle| + |\langle x_m, y_n - y_m \rangle| \\ &\leq ||x_n - x_m|| ||y_n|| + ||x_m|| ||y_n - y_m||. \end{aligned}$$

Since $||x_n - x_m|| \to 0$ and $||y_n - y_m|| \to 0$ as $n, m \to \infty$, $||x_n - x_m|| ||y_n|| + ||x_m|| ||y_n - y_m|| \to 0$ as $n, m \to \infty$. Thus, $|\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| \to 0$ as $n, m \to \infty$, so $(\langle x_n, y_n \rangle)$ is a Cauchy sequence in K. Since $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$, K with the absolute value is a complete space. Thus, since $(\langle x_n, y_n \rangle)$ is a Cauchy sequence in K, $(\langle x_n, y_n \rangle)$ converges in K. **A.1.6.** Let X be an inner product space and x, y be points in X, $\alpha \in \mathbb{K}$, and (x_n) , (y_n) be sequences in X and (α_n) a sequence in \mathbb{K} .

Show: If $x_n \to x$, $y_n \to y$ and $\alpha_n \to \alpha$ as $n \to \infty$, then $\langle \alpha_n x_n, y_n \rangle \to \langle \alpha x, y \rangle$ as $n \to \infty$.

Proof.

Suppose $x_n \to x$, $y_n \to y$, and $\alpha_n \to \alpha$ as $n \to \infty$. Let $\epsilon > 0$. Since $x_n \to x$ as $n \to \infty$, each component of $x_n, x_n^j e_j$, where e_j is the jth canonical basis vector, converges to the same component in $x, x^j e_j$. So, for each $j, x_n^j \to x^j$ in \mathbb{K} as $n \to \infty$. By the limit properties of $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}, \alpha_n x_n^j \to \alpha x^j$ as $n \to \infty$ for each j. So, $\alpha_n x_n \to \alpha x$ as $n \to \infty$. So, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $||\alpha_n x_n - \alpha x|| < \frac{\epsilon}{2||y||}$. Since $\alpha_n x_n \to \alpha x$ as $n \to \infty, \alpha_n x_n$ is bounded for all $n \in \mathbb{N}$. So, for all $n \in \mathbb{N}, ||\alpha_n x_n|| \le c$, for some c > 0. Since $y_n \to y$ as $n \to \infty$, there exists $M \in \mathbb{N}$ such that for all $n \ge \mathbb{M}, ||y_n - y|| < \frac{\epsilon}{2c}$. Pick $L = \max\{M, N\}$. Then, for $n \ge L$,

$$\begin{aligned} |\langle \alpha_n x_n, y_n \rangle - \langle \alpha x, y \rangle| \\ &= |\langle \alpha_n x_n, y_n \rangle - \langle \alpha_n x_n, y \rangle + \langle \alpha_n x_n, y \rangle| - \langle \alpha x, y \rangle| \\ &= |\langle \alpha_n x_n, y_n - y \rangle + \langle \alpha_n x_n - \alpha x, y \rangle| \\ &\leq ||\alpha_n x_n|| ||y_n - y|| + ||\alpha_n x_n - \alpha x|| ||y|| \text{ (Cauchy-Schwarz)} \\ &< ||\alpha_n x_n|| \frac{\epsilon}{2c} + \frac{\epsilon}{2||y||} ||y|| \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Thus, $\langle \alpha_n x_n, y_n \rangle \to \langle \alpha x, y \rangle$ as $n \to \infty$.

A.1.7. Let X be an inner product space, $x \in X$ and (x_n) a sequence in X. Show: $x_n \to x$ as $n \to \infty$ if and only if $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ as $n \to \infty$.

Proof.

 (\rightarrow) Suppose $x_n \to x$ as $n \to \infty$. Let $\epsilon > 0$. Then, there exists $N \in \mathbb{N}$ such that $||x_n - x|| < \epsilon$ for all $n \ge N$. By the reverse triangle inequality, $\epsilon > ||x_n - x|| \ge |||x_n|| - ||x|||$ for all $n \ge N$. So, $||x_n|| \to ||x||$ as $n \to \infty$. Since $x_n \to x$ as $n \to \infty$, there exists $M \in \mathbb{N}$ such that $||x_n - x|| < \frac{\epsilon}{||x||}$ for all $n \ge M$. Then, $|\langle x_n, x \rangle - \langle x, x \rangle| = |\langle x_n - x, x \rangle| \le ||x_n - x|| ||x|| < \frac{\epsilon}{||x||} ||x|| = \epsilon$ by Cauchy-Schwarz. Thus, $||x_n|| \to ||x||$ as $n \to \infty$ as well.

 (\leftarrow) Suppose $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ as $n \to \infty$. Then, $\langle x_n, x \rangle \to \langle x, x \rangle = ||x||^2$ as $n \to \infty$.

So,
$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle$$

= $\langle x_n, x_n \rangle - \langle x_n, x \rangle - \langle x, x_n \rangle + \langle x, x \rangle$
= $||x_n||^2 - \langle x_n, x \rangle - \langle x, x_n \rangle + ||x||^2$.

Then, as $n \to \infty$, the above equation,

$$||x_n||^2 - \langle x_n, x \rangle - \langle x, x_n \rangle + ||x||^2 \rightarrow ||x||^2 - ||x||^2 - ||x||^2 + ||x||^2 = 0.$$

So, as $n \to \infty$, $||x_n - x||^2 \to 0$. Therefore, $||x_n - x|| \to 0$ as $n \to \infty$, meaning that $x_n \to x$ as $n \to \infty$.

A.1.8. Let X be an inner product space. Let $y \in X$ be fixed but arbitrary. Define $f, g: X \to \mathbb{C}$ by

$$f(x) = \langle x, y \rangle, \ g(x) = \langle y, x \rangle, \ x \in X$$

Then f and g are Lipschitz continuous with Lipschitz constant ||y||.

Proof.

Let $x, z \in X$. Let d be the metric induced by the norm on X.

Then,
$$|f(x) - f(z)| = |\langle x, y \rangle - \langle z, y \rangle|$$

= $|\langle x - z, y \rangle|$
 $\leq ||x - z|| ||y||$
= $d(x, z) ||y||$

by the Cauchy-Schwarz inequality. Thus, $|f(x) - f(z)| \leq ||y|| d(x, z)$, so f is Lipschitz continuous with Lipschitz constant ||y||.

To show g is Lipschitz continuous, again let $x, z \in X$.

Then,
$$|g(x) - g(z)| = |\langle y, x \rangle - \langle y, z \rangle|$$

= $|\overline{\langle x, y \rangle} - \overline{\langle z, y \rangle}|$
= $|\overline{\langle x, y \rangle - \langle z, y \rangle}|$

from the distributive law and properties of the complex conjugate.

Then,
$$|\overline{\langle x, y \rangle - \langle z, y \rangle}| = |\overline{\langle x - z, y \rangle}|$$

= $|\langle y, x - z \rangle|$

from the distribute law and the properties of an inner product.

Finally, $|\langle y, x-z \rangle| \le ||y|| ||x-z|| = ||y|| d(x, z)$ by the Cauchy-Schwarz inequality. Thus, $|g(x) - g(z)| \le ||y|| d(x, z)$. So, g is Lipschitz continuous with ||y|| a Lipschitz constant.

A.1.9. Let M be a complete linear subspace of the inner product space X.

Show: Each vector $u \in X$ has a unique representation u = v + w such that $v \in M$ and $\langle w, z \rangle = 0$ for all $z \in M$. (The vector $v \in M$ is called the orthogonal projection of u on M)

Proof.

By Remark 1.10, linear subspaces of a vector space are convex, so M is convex. Let $u \in X$. Then, by Proposition A.9, for each vector $u \in X$, there exists a unique $v \in M$ such that d(u, M) = ||u - v||. Let w = u - v. Now, we must show that $\langle w, z \rangle = 0$ for all $z \in M$. Let $z \in M$ with ||z|| = 1 by normalizing u, v, and w to z. Let $\alpha \in \mathbb{K}$ and consider $\phi(\alpha) = ||w - \alpha z||^2$. Then, $||w - \alpha z||^2 = ||u - v - \alpha z||^2 = ||u - (v + \alpha z)||^2$. Since $v, z \in M$ and $\alpha \in \mathbb{K}, v + \alpha z \in M$ by definition of a linear subspace. Since $v \in M$ is the unique vector in M such that $||u - v|| = d(u, M) = \inf_{y \in M} \{||u - y||; y \in M\}, ||u - (v + \alpha z)|| \ge ||u - v||$. So, the minimum of $\phi(\alpha) = ||w - \alpha z||^2 = ||u - (v + \alpha z)||^2$ occurs at $\alpha = 0$ since $||u - (v + \alpha z)||^2 \ge ||u - v||^2$ for all $\alpha \in \mathbb{K}$. Therefore, $||w - \alpha z|| \ge ||w||^2$ for all $\alpha \in \mathbb{K}$.

Also,
$$||w - \alpha z||^2 = \langle w - \alpha z, w - \alpha z \rangle$$

= $\langle w, w \rangle - \langle \alpha z, w \rangle - \langle w, \alpha z \rangle + \langle \alpha z, \alpha z \rangle$
= $||w||^2 - \alpha \langle z, w \rangle - \overline{\alpha} \langle w, z \rangle + |\alpha|^2 ||z||^2$

Consider $\alpha = \langle z, w \rangle \in \mathbb{K}$.

Then,
$$\phi(\langle z, w \rangle) = ||w - \langle z, w \rangle z||^2$$

= $||w||^2 - |\langle z, w \rangle|^2 - |\langle w, z \rangle|^2 + |\langle z, w \rangle|^2 ||z||^2$
= $||w||^2 - |\langle w, z \rangle|^2 - |\langle w, z \rangle|^2 + |\langle z, w \rangle|^2 ||z||^2$
= $||w||^2 - |\langle w, z \rangle|^2$.

However, since $\phi(\alpha) = ||w - \alpha z||^2$ has a minimum of $||w||^2$ at $\alpha = 0$, $\phi(\langle z, w \rangle) \ge ||w||^2$. Therefore, $|\langle w, z \rangle| = 0$, meaning $\langle w, z \rangle = 0$. Since $z \in M$ was arbitrary, $\langle w, z \rangle = 0$ for all $z \in M$.

To show uniqueness, suppose there exists v_1, v_2, w_1, w_2 such that $u = v_1 + w_1 = v_2 + w_2$ with $v_i \in M$ and $\langle w_i, z \rangle = 0$ for all $z \in M$ and i = 1, 2. Since $\langle w_i, z \rangle = 0$ for all $z \in M$ and $v_1, v_2 \in M$, we have that $0 = \langle w_1, v_1 \rangle = \langle w_2, v_1 \rangle = \langle w_1, v_2 \rangle = \langle w_2, v_2 \rangle$. Since $w_1 = u - v_1$ and $w_2 = u - v_2$, these equations give the following equations:

$$0 = \langle w_1, v_1 \rangle = \langle u - v_1, v_1 \rangle = \langle u, v_1 \rangle - \langle v_1, v_1 \rangle$$

$$0 = \langle w_2, v_1 \rangle = \langle u - v_2, v_1 \rangle = \langle u, v_1 \rangle - \langle v_2, v_1 \rangle$$

$$0 = \langle w_1, v_2 \rangle = \langle u - v_1, v_2 \rangle = \langle u, v_2 \rangle - \langle v_1, v_2 \rangle$$

$$0 = \langle w_2, v_2 \rangle = \langle u - v_2, v_2 \rangle = \langle u, v_2 \rangle - \langle v_2, v_2 \rangle$$

So, these equations give us that

$$\langle u, v_1 \rangle = \langle v_1, v_1 \rangle \langle u, v_1 \rangle = \langle v_2, v_1 \rangle \langle u, v_2 \rangle = \langle v_1, v_2 \rangle \text{ and,} \langle u, v_2 \rangle = \langle v_2, v_2 \rangle.$$

From the above four equations, the first two equations give that $\langle v_1, v_1 \rangle = \langle v_2, v_1 \rangle$, or equivalently, $\langle v_1 - v_2, v_1 \rangle = 0$. The second two equations give that $\langle v_1, v_2 \rangle = \langle v_2, v_2 \rangle$, or equivalently, $\langle v_1 - v_2, v_2 \rangle = 0$. So, $\langle v_1 - v_2, v_1 - v_2 \rangle = 0$. Thus, from the positivity of an inner product, $v_1 - v_2 = \mathbb{O}$, i.e. $v_1 = v_2$.

Since $w_1 = u - v_1$ and $w_2 = u - v_2$, we can also rewrite the equations as follows:

$$0 = \langle w_1, v_1 \rangle = \langle w_1, u - w_1 \rangle = \langle w_1, u \rangle - \langle w_1, w_1 \rangle$$

$$0 = \langle w_2, v_1 \rangle = \langle w_2, u - w_1 \rangle = \langle w_2, u \rangle - \langle w_2, w_1 \rangle$$

$$0 = \langle w_1, v_2 \rangle = \langle w_1, u - w_2 \rangle = \langle w_1, u \rangle - \langle w_1, w_2 \rangle$$

$$0 = \langle w_2, v_2 \rangle = \langle w_2, u - w_2 \rangle = \langle w_2, u \rangle - \langle w_2, w_2 \rangle.$$

Once again, combining the first two equations (of the four above) yields that $\langle w_1, w_1 \rangle - \langle w_1, w_2 \rangle = \langle w_1, w_1 - w_2 \rangle = 0$. Combining the second two equations yields that $\langle w_2, w_1 \rangle - \langle w_2, w_2 \rangle = \langle w_2, w_1 - w_2 \rangle = 0$. So, $\langle w_1 - w_2, w_1 - w_2 \rangle = 0$. Thus, from the positivity of an inner product, $w_1 - w_2 = \mathbb{O}$, i.e. $w_1 = w_2$. Therefore, $v_1 = v_2$ and $w_1 = w_2$, so the representation of u is unique.