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APM 503 Project: Proofs Involving Inner Product Spaces
Brian Sweeney

A.1.1. (An inner product is uniquely determined by the norm) Let X be a vector space
with inner product 〈·, ·〉 and associated norm || · ||.

(a) Show that 〈u, v〉+ 〈v, u〉 = 1
2
(||u+ v||2 − ||u− v||2).

Proof. Since O ∈ X, let u, v ∈ X. Since || · || on X is induced by an inner product,
||u||2 = 〈u, u〉 for u ∈ X.

Then,
1

2
(||u+ v||2 − ||u− v||2)

=
1

2
(〈u+ v, u+ v〉 − 〈u− v, u− v〉)

=
1

2
(〈u, u〉+ 〈v, u〉+ 〈v, u〉+ 〈v, v〉 − 〈u, u〉+ 〈v, u〉+ 〈u, v〉 − 〈v, v〉)

=
1

2
(2〈v, u〉+ 2〈u, v〉)

= 〈u, v〉+ 〈v, u〉

Thus, 〈u, v〉+ 〈v, u〉 = 1
2
(||u+ v||2 − ||u− v||2).

(b) Show that in a real inner product space 〈u, v〉 = 1
4
(||u+ v||2 − ||u− v||2).

Proof. Since O ∈ X, let u, v ∈ X. Since || · || on X is induced by an inner product,
||u||2 = 〈u, u〉 for u ∈ X. From the above proof (part (a)), we know that 〈u, v〉 + 〈v, u〉 =
1
2
(||u+ v||2 − ||u− v||2).

So,
1

4
(||u+ v||2 − ||u− v||2) =

1

2
(
1

2
(||u+ v||2 − ||u− v||2))

=
1

2
(〈u, v〉+ 〈v, u〉).

Since this is a real inner product space, 〈u, v〉 = 〈v, u〉, so

1

2
(〈u, v〉+ 〈v, u〉) =

1

2
(〈u, v〉+ 〈u, v〉) = 〈u, v〉

Thus, 1
4
(||u+ v||2 − ||u− v||2) = 〈u, v〉.
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(c) Show that, if X is a complex inner product space,

〈u, v〉 − 〈v, u〉 =
i

2
(||u+ iv||2 − ||u− iv||2)

and

〈u, v〉 =
1

4
(||u+ v||2 − ||u− v||2 + i||u+ iv||2 − i||u− iv||2).

Proof. Since O ∈ X, let u, v ∈ X.

Then,
i

2
(||u+ iv||2 − ||u− iv||2)

=
i

2
(〈u+ iv, u+ iv〉 − 〈u− iv, u− iv〉)

=
i

2
(〈u, u〉+ 〈iv, u〉+ 〈u, iv〉+ 〈iv, iv〉 − 〈u, u〉+ 〈iv, u〉+ 〈u, iv〉 − 〈iv, iv〉)

=
i

2
(2〈iv, u〉+ 2〈u, iv〉)

= i〈iv, u〉+ i〈u, iv〉
= i2〈v, u〉+ 〈iu, iv〉
= 〈u, v〉 − 〈v, u〉.

Thus, 〈u, v〉 − 〈v, u〉 = i
2
(||u+ iv||2 − ||u− iv||2).

Since O ∈ X, let u, v ∈ X. Then,

1

4
(||u+v||2−||u−v||2+i||u+iv||2−i||u−iv||2) =

1

4
(||u+v||2−||u−v||2)+ i

4
(||u+iv||2−i||u−iv||2)

. Using the result from (a), that 〈u, v〉 + 〈v, u〉 = 1
2
(||u + v||2 − ||u − v||2), and the result

above, that 〈u, v〉 − 〈v, u〉 = i
2
(||u+ iv||2 − ||u− iv||2), we have the following:

1

4
(||u+ v||2 − ||u− v||2) +

i

4
(||u+ iv||2 − i||u− iv||2)

=
1

2
(〈u, v〉+ 〈v, u〉) +

1

2
(〈u, v〉 − 〈v, u〉)

= 〈u, v〉.

Thus, 1
4
(||u+ v||2 − ||u− v||2 + i||u+ iv||2 − i||u− iv||2) = 〈u, v〉.
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A.1.2. A real n x n matrix A = (αij) is called symmetric if αij = αji for all i, j = 1, ..., n.

(a) Show that a real n x n matrix A is symmetric if and only if x · (Ay) = (Ax) · y for all
x, y ∈ Rn.

Proof.

(→) Suppose that a real n x n matrix A is symmetric. So, αij = αji for all i, j = 1, ..., n.
Let x, y ∈ Rn; x = (xi) and y = (yi), with i = 1, ..., n.

Then, Ay = (bi), where bi =
∑n

j=1 αijyj for i = 1, ..., n. Thus,

x · (Ay) =
n∑
i=1

xibi

=
n∑
i=1

xi(
n∑
j=1

αijyj)

=
n∑
i=1

n∑
j=1

xiαijyj.

Now, we can change the order of the summations and factor out yj:

x · (Ay) =
n∑
i=1

n∑
j=1

xiαijyj

=
n∑
j=1

n∑
i=1

xiαijyj

=
n∑
j=1

yj

n∑
i=1

xiαij.

Since αij = αji for all i, j = 1, ..., n,

n∑
j=1

yj

n∑
i=1

xiαij =
n∑
j=1

yj

n∑
i=1

xiαji

= y · (Ax)

= (Ax) · y

where the last equality follows from Rn being a real inner product space. Since x, y ∈ Rn

were arbitrary, x · (Ay) = (Ax) · y for all x, y ∈ Rn.

(←) Suppose x · (Ay) = (Ax) · y for all x, y ∈ Rn. Denote A = (αij), and let x = (xi)
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and y = (yi) be vectors in Rn. Then, Ay = (bi) where bi =
∑n

j=1 αijyj for i = 1, ..., n, so

x · (Ay) =
n∑
i=1

xibi

=
n∑
i=1

n∑
j=1

xiαijyj

=
n∑
i=1

n∑
j=1

αijxiyj.

Also, Ax = (ci), where ci =
∑n

j=1 αijxj for i = 1, ..., n and

(Ax) · y =
n∑
i=1

ciyi

=
n∑
i=1

n∑
j=1

αijxjyi.

Changing the indices on this second inner product to match x · (Ay), gives that

(Ax) · y =
n∑
i=1

n∑
j=1

αijxjyi

=
n∑
j=1

n∑
i=1

αjixiyj.

So, since x · (Ay) = (Ax) · y, we have that

n∑
i=1

n∑
j=1

αijxiyj =
n∑
j=1

n∑
i=1

αjixiyj (1)

for all x, y ∈ Rn. Let a, b ∈ {1, ..., n} and pick x, y ∈ Rn, x = (x1, ..., xn), y = (y1, ..., yn), such
that xa = 1 and xi = 0 for i 6= a, and yb = 1 and yj = 0 for j 6= b. Then, this equality gives
us that αab = αba. Since (1) holds for all x, y ∈ Rn, αab = αba holds for all a, b ∈ {1, ..., n}
by picking x, y ∈ Rn in a similar manner. Thus, αij = αji for all i, j ∈ {1, ..., n}, so A is
symmetric.

(b) A symmetric matrix A is called positive definite if x · (Ax) > 0 for all x ∈ Rn, x 6= 0.
Show: A function 〈, 〉 from Rn x Rn into R is an inner product on Rn if and only if there
exists a positive definite symmetric matrix A such that 〈x, y〉 = x · (Ay) for all x, y ∈ Rn.

Proof.

4



(→) Suppose 〈, 〉 from Rn x Rn into R is an inner product on Rn. Let x, y ∈ Rn,
where x = (x1, ..., xn) and y = (y1, ..., yn). Then, x = x1e1 + ... + xnen =

∑n
i=1 xiei and

y = y1e1 + ... + ynen =
∑n

i=1 yiei, where e1, ..., en denote the standard basis of Rn. By the
distributive law, we have that

〈x, y〉 = 〈
n∑
i=1

xiei,

n∑
j=1

yjej〉

=
n∑
i=1

n∑
j=1

〈xiei, yjej〉

=
n∑
i=1

n∑
j=1

xiyj〈ei, ej〉.

Pick A to be a matrix such that αij = 〈ei, ej〉 for i, j = 1, ..., n.

Then, 〈x, y〉 =
∑n

i=1

∑n
j=1 xiyjαij = x · (Ay). Now, we must show that A is symmetric

and positive definite.

By the symmetry of the inner product, 〈x, y〉 = 〈y, x〉, so x · (Ay) = 〈x, y〉 = 〈y, x〉 =
y · (Ax). By part (a), A is then a symmetric matrix. By the positivity of 〈, 〉, we have that
〈u, u〉 > 0 for all u ∈ Rn, u 6= O, so A is positive definite. Therefore, A is a positive definite
matrix that satisfies 〈x, y〉 = x · (Ay) for all x, y ∈ Rn.

(←) Suppose there exists a positive definite matrix A such that 〈x, y〉 = x · (Ay) for all
x, y ∈ Rn. Let x, y, z ∈ Rn, and α ∈ R.

(i) Since A is symmetric, x · (Ay) = (Ax) · y by part (a). Also, since the Euclidean
inner product is an inner product on Rn, · is symmetric so (Ax) · y = y · (Ax). Thus,
〈x, y〉 = x · (Ay) = y · (Ax) = 〈y, x〉, so 〈, 〉 is symmetric.

(ii) Since the Euclidean inner product is an inner product on Rn, (αx) ·(Ay) = α[x ·(Ay)].
So, 〈αx, y〉 = (αx) · (Ay) = α[x · (Ay)] = α〈x, y〉, so the associate law holds.

(iii) Again, since · is an inner product on Rn, we have 〈x + y, z〉 = (x + y) · (Az) =
[x · (Az)] + [y · (Az)] = 〈x, z〉+ 〈y, z〉. Thus the distributive law holds for 〈, 〉.

(iv) Since A is a positive definite matrix, u · (Au) > 0 for all u ∈ Rn, u 6= O. Let x ∈ Rn,
x 6= O. Then, 〈x, x〉 = x · (Ax) > 0, so 〈, 〉 is positive definite. Thus, 〈, 〉 is an inner product
on Rn.
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A.1.3. Let A be a positive definite symmetric n x n matrix and · denote the inner
product on Rn.
Show: |x · (Ay)|2 ≤ [x · (Ax)][y · (Ay)] for all x, y ∈ Rn with equality holding if and only if x
and y are linearly dependent.

Proof.

Let A be a positive definite symmetric n x n matrix. To prove this inequality, we will
first show that 〈, 〉 defined by 〈x, y〉 = x · (Ay) is an inner product on Rn. Let x, y, z ∈ Rn

and α ∈ R.

(i) We have that 〈x, y〉 = x · (Ay) = y · (Ax) = 〈y, x〉 from the result of A.1.2(a) and the
commutativity of the inner product on R. So, 〈x, y〉 = 〈y, x〉.

(ii) We can use the fact that · is an inner product on Rn to rewrite 〈αx, y〉 as follows:
〈αx, y〉 = (αx) · (Ay) = α[x · (Ay)] = α〈x, y〉. So, 〈αx, y〉 = α〈x, y〉.

(iii) Consider 〈x+ y, z〉 = (x+ y) · (Az). Again, since · is an inner product on Rn,

(x+ y) · (Az) = [x · (Az)] + [y · (Az)]

= 〈x, z〉+ 〈y, z〉.

Thus, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

(iv) Let w ∈ Rn,w 6= O. Since A is positive definite, 〈w,w〉 = w · (Aw) > 0 by definition.
Thus, 〈w,w〉 > 0 for w 6= O.

Therefore, we have that 〈, 〉 is an inner product on Rn. Applying the Cauchy-Schwarz
Inequality (Theorem A.2), we have that for all x, y ∈ Rn,

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 or equivalently,

|x · (Ay)|2 ≤ [x · (Ax)][y · (Ay)],

with equality if and only if x and y are linearly dependent.
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A.1.4. Consider `2 = {x = (xn) ∈ CN; ||x||2 <∞} where

||x||22 =
∞∑
n=1

|xn|2

.
Show:

(a) For each x = (xn) and y = (yn) in `2, the series

∞∑
k=1

xkȳk =: 〈x, y〉

converges in C (with absolute value) and defines an inner product on `2.

Proof.

We first show that `2 is a linear subspace of CN. Let x, y ∈ `2 and α ∈ C.

(i) Since ||x||2 < ∞, there exists c ∈ R, c > 0 such that ||x||2 =
√∑∞

n=1 |xn|2 < c, so
||x||22 =

∑∞
n=1 |xn|2 < c2. So, for all m ∈ N,

∑m
n=1 |xn|2 < c2. Then, for all m ∈ N,

m∑
n=1

|αxn|2 =
m∑
n=1

|α|2 |xn|2

= |α|2
m∑
n=1

|xn|2

< |α|2c2.

Since this is true for all m ∈ N,
∑∞

n=1 |αxn|2 < |α|2c2, so ||αx||2 =
√∑∞

n=1 |αxn|2 <√
|α|2c2 <∞, meaning that αx ∈ `2.

(ii) Since ||x||2 < ∞ and ||y||2 < ∞, there exists c, d ∈ R, c, d > 0 such that ||x||2 =√∑∞
n=1 |xn|2 < c and ||y||2 =

√∑∞
n=1 |yn|2 < d, so ||x||22 =

∑∞
n=1 |xn|2 < c2 and ||y||22 =∑∞

n=1 |yn|2 < d2. Then, for all m ∈ N,
∑m

n=1 |xn|2 < c2 and
∑m

n=1 |yn|2 < d2. So, for all
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m ∈ N,

m∑
n=1

|xn + yn|2 =
m∑
n=1

|xn + yn| |xn + yn|

≤
m∑
n=1

|xn| (|xn + yn|) + |yn| (|xn + yn|)

≤
m∑
n=1

|xn| (|xn|+ |yn|) + |yn| (|xn|+ |yn|)

=
m∑
n=1

|xn|2 + 2|xn| |yn|+ |yn|2

< c2 + 2cd+ d2

Since this is true for allm ∈ N,
∑∞

n=1 |xn+yn|2 < c2+2cd+d2, so ||x+y||2 =
√∑∞

n=1 |xn + yn|2 <√
c2 + 2cd+ d2 <∞, meaning that x+ y ∈ `2. Thus, `2 is a linear subspace of CN.

Now we must show that the series

∞∑
k=1

xkȳk =: 〈x, y〉

converges in C for each x = (xn) and y = (yn). Let x, y ∈ `2, so x = (xn) and y = (yn) since
x, y are sequences. Also, ||x||2 <∞ and ||y||2 <∞ since x, y ∈ `2. So, there exists c, d ∈ R,
c, d > 0 such that ||x||2 =

√∑∞
n=1 |xn|2 < c and ||y||2 =

√∑∞
n=1 |yn|2 < d, and by extension,

||x||22 =
∑∞

n=1 |xn|2 < c2 and ||y||22 =
∑∞

n=1 |yn|2 < d2. So, for all m ∈ N,
∑m

n=1 |xn|2 < c2

and
∑m

n=1 |yn|2 < d2. Then, by the triangle inequality, we have

|
m∑
k=1

xkȳk| ≤
m∑
k=1

|xkȳk|

=
m∑
k=1

|xk| |ȳk|

=
m∑
k=1

|xk| |yk|.

Note that we can bound
∑m

k=1 |xk| |yk| by looking at the relation between |xk| and |yk|
for each k = 1, ...,m. If |xk| ≤ |yk| for a given k = 1, ...,m, then, |xk| |yk| ≤ |yk|2. If
|xk| > |yk| for a given k = 1, ...,m, then, |xk| |yk| < |xk|2. So, combining these two, we get
that

∑m
k=1 |xk| |yk| ≤

∑m
k=1(|xk|2 + |yk|2) < c2 + d2 for all m ∈ N. Thus, |

∑m
k=1 xkȳk| ≤∑m

k=1 |xkȳk| ≤ c2 + d2 for all m ∈ N. So, the partial sums |
∑m

k=1 xkȳk|, which is a non-
negative series, is bounded for all m ∈ N. Thus |

∑∞
k=1 xkȳk| < c2 + d2, meaning that
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|
∑∞

k=1 xkȳk| converges in C with the absolute value by Theorem 2.38. Now, we must prove
that 〈, 〉 defines an inner product on the vector space `2.

(i) Let x, y ∈ `2. Note that 〈y, x〉 exists since x, y ∈ CN, so
∑∞

k=1 ykx̄k converges. Then,
we can apply the complex conjugation over the sum as follows:

〈y, x〉 = 〈y, x〉

=
∞∑
k=1

ykx̄k

=
∞∑
k=1

ȳkxk

=
∞∑
k=1

xkȳk

= 〈x, y〉.

Thus, 〈x, y〉 = 〈y, x〉.

(ii) Let x, y ∈ `2 and α ∈ C. Since
∑∞

k=1 xkȳk =: 〈x, y〉 converges, we have that

α〈x, y〉 = α
∞∑
k=1

xkȳk

=
∞∑
k=1

αxkȳk

= 〈αx, y〉.

Thus, the associative law holds.

(iii) Let x, y, z ∈ `2. Since
∑∞

k=1 xkz̄k =: 〈x, z〉 converges and
∑∞

k=1 ykz̄k =: 〈y, z〉 con-
verges, we have that

〈x, z〉+ 〈y, z〉 =
∞∑
k=1

xkz̄k +
∞∑
k=1

ykz̄k

=
∞∑
k=1

(xk + yk)z̄k

= 〈x+ y, z〉

Thus, the distributive law holds for 〈, 〉.
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(iv) Let x ∈ `2 such that x = (xn) is not the zero sequence. Then, 〈x, x〉 =
∑∞

k=1 xkx̄k
since this series converges in C with the absolute value. Since x = (xn) is not the zero
sequence, there exists some j ∈ N such that xj 6= 0. So, 〈x, x〉 =

∑∞
k=1 xkx̄k ≥ xjx̄j > 0.

Thus, 〈, 〉 is positive definite. Therefore, the series defines an inner product on `2.

(b) `2 with this inner product is a Hilbert space.

Proof.

Let (xn(k))k∈N be a Cauchy sequence in `2, with k being the index for the sequence xn
(So, xn is a sequence in `2 and for a fixed n, (xn(k))k∈N ∈ `2). Let ε > 0. Then, there exists
N ∈ N such that for all n,m ≥ N , ||xn−xm||2 <

√
ε
2
, so ||xn−xm||22 < ε

2
. We also have that

||xn − xm||22 =
∑∞

k=1 |xn(k) − xm(k)|2, so ε > ||xn − xm||22 ≥ |xn(k) − xm(k)| for any k ∈ N
and n,m ≥ N . This implies that (xn) is a uniform Cauchy sequence on N. By Remark 2.21,
(xn(k)) is a Cauchy sequence in C. Since C with the absolute value is a complete metric
space, for each k ∈ N, there exists z(k) ∈ C such that xn(k)→ z(k) as n→∞.

Consider the sequence z = (z(k))k∈N. Let j ∈ N. Since (xn) is a Cauchy sequence, there

exists M ∈ N such that for all n,m ≥ M , ||xn − xm||2 < ε
2
. So,

√∑j
k=1 |xn(k)− xm(k)|2 ≤√∑∞

k=1 |xn(k)− xm(k)|2 < ε
2
. Since xn(k) → z(k) as n → ∞ for each k ∈ N, there exists

some mkj ∈ N such that |xn(k)− z(k)| < ε
2
√
j

for all n ≥ mkj. So,
∑j

k=1 |xn(k)− z(k)|2 < ε2

4
,

and
√∑j

k=1 |xn(k)− z(k)|2 < ε
2

for all n ≥ mkj. Let m ≥ max{mkj,M}. Then for all j ∈ N
and n ≥M , we have√√√√ j∑

k=1

|xn(k)− z(k)|2 =

√√√√ j∑
k=1

|xn(k)− xm(k) + xm(k)− z(k)|2

≤

√√√√ j∑
k=1

|xn(k)− xm(k)|2 +

√√√√ j∑
k=1

|xm(k)− z(k)|2

<
ε

2
+
ε

2
= ε.

Since this holds for all j ∈ N,
√∑∞

k=1 |xn(k)− z(k)|2 < ε, meaning that ||xn − z||2 =√∑∞
k=1 |xn(k)− z(k)|2 < ε for all n ≥ M . Thus, since M does not depend on k, (xn)

converges uniformly to z.

Now, we must show that z ∈ `2. Consider
∑m

k=1 |z(k)|2 =
∑m

k=1 | limn→∞ xn(k)|2. Since
(xn(k))k∈N is a Cauchy sequence in `2, (xn(k))k∈N is bounded in `2. So, there exists c > 0
such that for all n ∈ N, ||xn||2 =

√∑∞
k=1 |xn(k)|2 < c. Then, ||xn||22 =

∑∞
k=1 |xn(k)|2 < c2.

So, for all m ∈ N and n ∈ N,
∑m

k=1 |xn(k)|2 < c2. Then, by the definition of limit, for
all m ∈ N,

∑m
k=1 |z(k)|2 =

∑m
k=1 | limn→∞ xn(k)|2 ≤ c2. Since this holds for all m ∈ N, by
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Theorem 2.38, we have that
∑∞

k=1 |z(k)|2 converges. So, ||z||22 =
∑∞

k=1 |z(k)|2 <∞, meaning
that ||z||2 < ∞. Thus, z ∈ `2. Therefore, xn → z as n → ∞ and z ∈ `2, so `2 is a Hilbert
space.
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A.1.5. Let X be an inner product space over K and (xn), (yn) be Cauchy sequences in
X. Show: The sequence (〈xn, yn〉) converges in K.

Proof.

Let ε > 0. Since (xn), (yn) are Cauchy sequences in X, there exists N,M ∈ N such that
||xn − xm|| < ε for all n,m ≥ N and ||yn − ym|| < ε for all n,m ≥ M . So, we have that
||xn − xm|| → 0 as n,m→∞ and ||yn − ym|| → 0 as n,m→∞. Note that for all n,m ∈ N,

〈xn, yn〉 − 〈xm, ym〉 = 〈xn, yn〉 − 〈xm, yn〉+ 〈xm, yn〉 − 〈xm, ym〉
= 〈xn − xm, yn〉+ 〈xm, yn − ym〉.

So, |〈xn, yn〉 − 〈xm, ym〉| = |〈xn − xm, yn〉 + 〈xm, yn − ym〉|. By the triangle inequality and
the Cauchy-Schwarz ineqaulity,

|〈xn, yn〉 − 〈xm, ym〉| = |〈xn − xm, yn〉+ 〈xm, yn − ym〉|
≤ |〈xn − xm, yn〉|+ |〈xm, yn − ym〉|
≤ ||xn − xm|| ||yn||+ ||xm|| ||yn − ym||.

Since ||xn−xm|| → 0 and ||yn−ym|| → 0 as n,m→∞, ||xn−xm|| ||yn||+||xm|| ||yn−ym|| → 0
as n,m → ∞. Thus, |〈xn, yn〉 − 〈xm, ym〉| → 0 as n,m → ∞, so (〈xn, yn〉) is a Cauchy
sequence in K. Since K = C or K = R, K with the absolute value is a complete space. Thus,
since (〈xn, yn〉) is a Cauchy sequence in K, (〈xn, yn〉) converges in K.
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A.1.6. Let X be an inner product space and x, y be points in X, α ∈ K, and (xn), (yn)
be sequences in X and (αn) a sequence in K.

Show: If xn → x, yn → y and αn → α as n→∞, then 〈αnxn, yn〉 → 〈αx, y〉 as n→∞.

Proof.

Suppose xn → x, yn → y, and αn → α as n → ∞. Let ε > 0. Since xn → x as n → ∞,
each component of xn, xjnej, where ej is the jth canonical basis vector, converges to the same
component in x, xjej. So, for each j, xjn → xj in K as n → ∞. By the limit properties
of K = C or K = R, αnx

j
n → αxj as n → ∞ for each j. So, αnxn → αx as n → ∞. So,

there exists N ∈ N such that for all n ≥ N , ||αnxn − αx|| < ε
2||y|| . Since αnxn → αx as

n → ∞, αnxn is bounded for all n ∈ N. So, for all n ∈ N, ||αnxn|| ≤ c, for some c > 0.
Since yn → y as n → ∞, there exists M ∈ N such that for all n ≥ M, ||yn − y|| < ε

2c
. Pick

L = max{M,N}. Then, for n ≥ L,

|〈αnxn, yn〉 − 〈αx, y〉|
= |〈αnxn, yn〉 − 〈αnxn, y〉+ 〈αnxn, y〉| − 〈αx, y〉|
= |〈αnxn, yn − y〉+ 〈αnxn − αx, y〉|
≤ ||αnxn|| ||yn − y||+ ||αnxn − αx|| ||y|| (Cauchy-Schwarz)

< ||αnxn||
ε

2c
+

ε

2||y||
||y||

≤ ε

2
+
ε

2
= ε.

Thus, 〈αnxn, yn〉 → 〈αx, y〉 as n→∞.
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A.1.7. Let X be an inner product space, x ∈ X and (xn) a sequence in X. Show:
xn → x as n→∞ if and only if ||xn|| → ||x|| and 〈xn, x〉 → 〈x, x〉 as n→∞.

Proof.

(→) Suppose xn → x as n → ∞. Let ε > 0. Then, there exists N ∈ N such that
||xn−x|| < ε for all n ≥ N . By the reverse triangle inequality, ε > ||xn−x|| ≥ | ||xn||−||x|| |
for all n ≥ N . So, ||xn|| → ||x|| as n→∞. Since xn → x as n→∞, there exists M ∈ N such
that ||xn−x|| < ε

||x|| for all n ≥M . Then, |〈xn, x〉−〈x, x〉| = |〈xn−x, x〉| ≤ ||xn−x|| ||x|| <
ε

||x|| ||x|| = ε by Cauchy-Schwarz. Thus, ||xn|| → ||x|| as n→∞ as well.

(←) Suppose ||xn|| → ||x|| and 〈xn, x〉 → 〈x, x〉 as n → ∞. Then, 〈xn, x〉 → 〈x, x〉 =
||x||2 as n→∞.

So, ||xn − x||2 = 〈xn − x, xn − x〉
= 〈xn, xn〉 − 〈xn, x〉 − 〈x, xn〉+ 〈x, x〉
= ||xn||2 − 〈xn, x〉 − 〈x, xn〉+ ||x||2.

Then, as n→∞, the above equation,

||xn||2 − 〈xn, x〉 − 〈x, xn〉+ ||x||2 → ||x||2 − ||x||2 − ||x||2 + ||x||2 = 0.

So, as n→∞, ||xn − x||2 → 0. Therefore, ||xn − x|| → 0 as n→∞, meaning that xn → x
as n→∞.
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A.1.8. Let X be an inner product space. Let y ∈ X be fixed but arbitrary. Define
f, g : X → C by

f(x) = 〈x, y〉, g(x) = 〈y, x〉, x ∈ X

Then f and g are Lipschitz continuous with Lipschitz constant ||y||.

Proof.

Let x, z ∈ X. Let d be the metric induced by the norm on X.

Then, |f(x)− f(z)| = |〈x, y〉 − 〈z, y〉|
= |〈x− z, y〉|
≤ ||x− z|| ||y||
= d(x, z) ||y||

by the Cauchy-Schwarz inequality. Thus, |f(x) − f(z)| ≤ ||y|| d(x, z), so f is Lipschitz
continuous with Lipschitz constant ||y||.

To show g is Lipschitz continuous, again let x, z ∈ X.

Then, |g(x)− g(z)| = |〈y, x〉 − 〈y, z〉|
= |〈x, y〉 − 〈z, y〉|
= |〈x, y〉 − 〈z, y〉|

from the distributive law and properties of the complex conjugate.

Then, |〈x, y〉 − 〈z, y〉| = |〈x− z, y〉|
= |〈y, x− z〉|

from the distribute law and the properties of an inner product.

Finally, |〈y, x−z〉| ≤ ||y|| ||x−z|| = ||y|| d(x, z) by the Cauchy-Schwarz inequality. Thus,
|g(x)− g(z)| ≤ ||y|| d(x, z). So, g is Lipschitz continuous with ||y|| a Lipschitz constant.
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A.1.9. Let M be a complete linear subspace of the inner product space X.

Show: Each vector u ∈ X has a unique representation u = v + w such that v ∈ M and
〈w, z〉 = 0 for all z ∈M . (The vector v ∈M is called the orthogonal projection of u on M)

Proof.

By Remark 1.10, linear subspaces of a vector space are convex, so M is convex. Let
u ∈ X. Then, by Proposition A.9, for each vector u ∈ X, there exists a unique v ∈ M
such that d(u,M) = ||u − v||. Let w = u − v. Now, we must show that 〈w, z〉 = 0 for
all z ∈ M . Let z ∈ M with ||z|| = 1 by normalizing u,v, and w to z. Let α ∈ K and
consider φ(α) = ||w − αz||2. Then, ||w − αz||2 = ||u − v − αz||2 = ||u − (v + αz)||2. Since
v, z ∈ M and α ∈ K, v + αz ∈ M by definition of a linear subspace. Since v ∈ M
is the unique vector in M such that ||u − v|| = d(u,M) = infy∈M{||u − y||; y ∈ M},
||u − (v + αz)|| ≥ ||u − v||. So, the minimum of φ(α) = ||w − αz||2 = ||u − (v + αz)||2
occurs at α = 0 since ||u− (v+αz)||2 ≥ ||u−v||2 for all α ∈ K. Therefore, ||w−αz|| ≥ ||w||2
for all α ∈ K.

Also, ||w − αz||2 = 〈w − αz, w − αz〉
= 〈w,w〉 − 〈αz, w〉 − 〈w, αz〉+ 〈αz, αz〉
= ||w||2 − α〈z, w〉 − ᾱ〈w, z〉+ |α|2 ||z||2.

Consider α = 〈z, w〉 ∈ K.

Then, φ(〈z, w〉) = ||w − 〈z, w〉z||2

= ||w||2 − |〈z, w〉|2 − |〈w, z〉|2 + |〈z, w〉|2 ||z||2

= ||w||2 − |〈w, z〉|2 − |〈w, z〉|2 + |〈z, w〉|2 ||z||2

= ||w||2 − |〈w, z〉|2.

However, since φ(α) = ||w − αz||2 has a minimum of ||w||2 at α = 0, φ(〈z, w〉) ≥ ||w||2.
Therefore, |〈w, z〉| = 0, meaning 〈w, z〉 = 0. Since z ∈ M was arbitrary, 〈w, z〉 = 0 for all
z ∈M .

To show uniqueness, suppose there exists v1, v2, w1, w2 such that u = v1 + w1 = v2 + w2

with vi ∈ M and 〈wi, z〉 = 0 for all z ∈ M and i = 1, 2. Since 〈wi, z〉 = 0 for all z ∈ M and
v1, v2 ∈ M , we have that 0 = 〈w1, v1〉 = 〈w2, v1〉 = 〈w1, v2〉 = 〈w2, v2〉. Since w1 = u − v1
and w2 = u− v2, these equations give the following equations:

0 = 〈w1, v1〉 = 〈u− v1, v1〉 = 〈u, v1〉 − 〈v1, v1〉
0 = 〈w2, v1〉 = 〈u− v2, v1〉 = 〈u, v1〉 − 〈v2, v1〉
0 = 〈w1, v2〉 = 〈u− v1, v2〉 = 〈u, v2〉 − 〈v1, v2〉
0 = 〈w2, v2〉 = 〈u− v2, v2〉 = 〈u, v2〉 − 〈v2, v2〉.
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So, these equations give us that

〈u, v1〉 = 〈v1, v1〉
〈u, v1〉 = 〈v2, v1〉
〈u, v2〉 = 〈v1, v2〉 and,

〈u, v2〉 = 〈v2, v2〉.

From the above four equations, the first two equations give that 〈v1, v1〉 = 〈v2, v1〉, or equiva-
lently, 〈v1−v2, v1〉 = 0. The second two equations give that 〈v1, v2〉 = 〈v2, v2〉, or equivalently,
〈v1 − v2, v2〉 = 0. So, 〈v1 − v2, v1 − v2〉 = 0. Thus, from the positivity of an inner product,
v1 − v2 = O, i.e. v1 = v2.

Since w1 = u− v1 and w2 = u− v2, we can also rewrite the equations as follows:

0 = 〈w1, v1〉 = 〈w1, u− w1〉 = 〈w1, u〉 − 〈w1, w1〉
0 = 〈w2, v1〉 = 〈w2, u− w1〉 = 〈w2, u〉 − 〈w2, w1〉
0 = 〈w1, v2〉 = 〈w1, u− w2〉 = 〈w1, u〉 − 〈w1, w2〉
0 = 〈w2, v2〉 = 〈w2, u− w2〉 = 〈w2, u〉 − 〈w2, w2〉.

Once again, combining the first two equations (of the four above) yields that 〈w1, w1〉 −
〈w1, w2〉 = 〈w1, w1 − w2〉 = 0. Combining the second two equations yields that 〈w2, w1〉 −
〈w2, w2〉 = 〈w2, w1 − w2〉 = 0. So, 〈w1 − w2, w1 − w2〉 = 0. Thus, from the positivity of
an inner product, w1 − w2 = O, i.e. w1 = w2. Therefore, v1 = v2 and w1 = w2, so the
representation of u is unique.
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