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APM 502 (Differential Equations II) Project
Brian Sweeney

2.7 Use Poisson’s formula for the ball to prove

rn−2
r − |x|

(r + |x|)n−1
u(0) ≤ u(x) ≤ rn−2

r + |x|
(r − |x|)n−1

u(0)

whenever u is positive and harmonic in B0(0, r). This is an explicit form of Harnack’s
inequality.

Proof.

Poisson’s formula for the ball is

u(x) =
r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

g(y)

|x− y|n
dS(y), x ∈ B0(0, r).

Using the average value over the integral, this formula can be rewritten as

u(x) = rn−2(r2 − |x|2)
∂B(0,r)

g(y)

|x− y|n
dS(y).

Then, we can compute that

u(0) = rn

∂B(0,r)

g(y)

|y|n
dS(y) =

∂B(0,r)

g(y)dS(y)

since |y| = r on ∂B(0, r). Additionally, we note that for y ∈ ∂B(0, r), |x− y| ≥ ||x| − |y|| =
||x| − r| = r − |x| and |x− y| ≤ |x|+ |y| = r + |x|. Thus,

∂B(0,r)

g(y)

(r + |x|)n
dS(y) ≤

∂B(0,r)

g(y)

|x− y|n
dS(y) ≤

∂B(0,r)

g(y)

(r − |x|)n
dS(y).

Combining these facts, we have that

rn−2
r − |x|

(r + |x|)n−1
u(0) = rn−2

r − |x|
(r + |x|)n−1 ∂B(0,r)

g(y)dS(y)

= rn−2
r2 − |x|2

(r + |x|)n ∂B(0,r)

g(y)dS(y)

= rn−2(r2 − |x|2)
∂B(0,r)

g(y)

(r + |x|)n
dS(y)dS(y)

≤ rn−2(r2 − |x|2)
∂B(0,r)

g(y)

|x− y|n
dS(y)

= u(x).
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Similarly,

rn−2
r + |x|

(r − |x|)n−1
u(0) = rn−2

r + |x|
(r − |x|)n−1 ∂B(0,r)

g(y)dS(y)

= rn−2
r2 − |x|2

(r − |x|)n ∂B(0,r)

g(y)dS(y)

= rn−2(r2 − |x|2)
∂B(0,r)

g(y)

(r − |x|)n
dS(y)dS(y)

≥ rn−2(r2 − |x|2)
∂B(0,r)

g(y)

|x− y|n
dS(y)

= u(x).

Thus, we have shown that

rn−2
r − |x|

(r + |x|)n−1
u(0) ≤ u(x) ≤ rn−2

r + |x|
(r − |x|)n−1

u(0).
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2.23 Let S denote the square lying in R x (0,∞) with corners at the points (0, 1), (1, 2), (0, 3), (−1, 2).
Define

f(x, t) :=


−1 for (x, t) ∈ S ∩ {t > x+ 2}
1 for (x, t) ∈ S ∩ {t < x+ 2}
0 otherwise.

Assume u solves {
utt − uxx = f in R× (0,∞)

u = 0, ut = 0 on R× {t = 0}.

Describe the shape of u for times t > 3.

Proof. Using Duhamel’s principle for the 1D wave equation, we have that the solution
to this nonhomogeneous problem is given by

u(x, t) =

ˆ t

0

1

2

ˆ x+s

x−s
f(y, t− s) dy ds =

1

2

ˆ t

0

ˆ x+s

x−s
f(y, t− s) dy ds.

This formula can be interpreted in a similar manner to the 1D wave equation, where u(x, t)
is equal to the integral of f over the triangular region in R x (0,∞) defined by the double
integral. From the way f is defined, if the entire square S is within this triangle, the integral
is zero since the two sections cancel each other out. Additionally, since S is divided by the
line t = x+2, any region that crosses this line perpendicularly will also integrate to zero since
different sections of f cancel out. This happens for triangles where x < −1. So, u(x, t) is
only nonzero when this triangular region contains only part of S, with the separate sections
not canceling out.

This happens in a region that is parallel to the line t = x + 2 in R x (0,∞), since (x, t)
in this region contain only part of S in a way that the values of f do not cancel out. In
particular, for these (x, t) the triangular region contains more of the positive section, and
the closer to the line t = x + 2 this edge is, the larger the value of u(x, t). So, this gives a
wave along this corridor in R x (0,∞) that is one unit wide corresponding to the width of
S.

So, for times t > 3, the shape of u is a mostly flat zero-valued function with a single
right-moving wave. This wave is centered at x = t− 2 and has width 1.
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3.4

(a) Write down the characteristic equations for the PDE

ut + b ·Du = f in Rn × (0,∞), (1)

where b ∈ Rn, f = f(x, t).

Proof. The characteristic equations are

∂xi
∂τ

= bi,
∂t

∂τ
= 1,

∂U

∂τ
= f(x, t).

(b) Use the characteristic ODE to solve (1) subject to the initial condition

u = g on Rn × {t = 0}.

Proof. We will parameterize this initial condition by defining xi(0) = a. Then, the
initial conditions are xi(0) = a, t(0) = 0, and U(0) = g(a). So, we have three separable
PDEs with solutions given by

xi(τ) = bit+ a

t(τ) = τ

U(xi(τ), t(τ)) = U(biτ + a, τ) =

ˆ τ

0

f(bis+ a, s) ds+ g(a)

Using the functions for xi and τ , we can deduce that τ = t and a = xi − bit. So,

u(xi, t) = U(xi, t) =

ˆ t

0

f(bis+ xi − bit, s) ds+ g(xi − bit)

=

ˆ t

0

f(xi + (s− t)bi, s) ds+ g(xi − bit).

Thus, u(x, t) = g(x− bt) +
´ t
0
f(x+ (s− t)b, s) ds.
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3.8 Confirm that the formula u = g(x− tF′(u)) provides an implicit solution for the conser-
vation law

ut + divF(u) = 0.

Proof. We can compute that

ut = −g′(x− tF′(u))(F′(u) + tF′′(u)ut)

= −g′(x− tF′(u))F′(u)− g′(x− tF′(u))tF′′(u)ut.

Then, solving for ut, we get that

ut =
−g′(x− tF′(u))F′(u)

1 + g′(x− tF′(u))tF′′(u)

Similarly, to compute divF(u), we have that

uxi = g′(x− tF′(u))(1− tF′(u)xiuxi)

= g′(x− tF′(u))− g′(x− tF′(u))tF′(u)xiuxi .

Then, solving for uxi , we have that

uxi =
g′(x− tF′(u))

1 + g′(x− tF′(u))tF′(u)xi
.

So, divF(u) = F′(u)
∑n

i=1 uxi , meaning that

divF(u) = F′(u)
g′(x− tF′(u))

1 + g′(x− tF′(u))tF′′(u)
.

So, we have that

ut + divF(u) =
−g′(x− tF′(u))F′(u)

1 + g′(x− tF′(u))tF′′(u)
+ F′(u)

g′(x− tF′(u))

1 + g′(x− tF′(u))tF′′(u)

= 0.

Thus, the formula u = g(x− tF′(u)) provides an implicit solution to the conservation law.
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4.1 Use separation of variables to find a nontrivial solution u of the PDE

u2x1ux1x1 + 2ux1ux2ux1x2 + u2x2ux2x2 = 0 in R2.

Proof. We will look for a solution of the form

u(x1, x2) = g(x1)h(x2).

So, ux1 = g′h, ux2 = gh′, ux1x1 = g′′h, ux2x2 = gh′′, ux1x2 = g′h′. Thus, we have that

(g′h)2g′′h+ 2g′hgh′g′h′ + (gh′)2gh′′ = 0.

Equivalently, this gives us that

(g′)2g′′h3 + 2(g′)2(h′)2gh+ g3(h′)2h′′ = 0.

Dividing through by g3h3, we have that

(g′)2g′′

g3
+

2(g′)2(h′)2

g2h2
+

(h′)2h′′

h3
= 0.

We can factor this into two terms as

(g′)2

g2
(
g′′

g
+

(h′)2

h2
) +

(h′)2

h2
(
(g′)2

g2
+
h′′

h
) = 0.

Since we are looking for nontrivial solutions, (g′)2

g2
6= 0 and (h′)2

h2
6= 0. So, to satisfy this above

equality we can look for functions g, h such that g′′

g
+ (h′)2

h2
= 0 and (g′)2

g2
+ h′′

h
= 0. From the

first of these equalities, we get that

g′′

g
= −(h′)2

h2
= µ,

so we can separate the variables into two ODEs, g′′

g
= µ and − (h′)2

h2
= µ. For now, we will

assume µ > 0. Then, we get that g(x1) = c1e
√
µx1 + c2e

−√µx1 and h(x2) = c3e
i
√

(µ)x2 for
constants c1, c2, c3, µ.

Following a similar approach for the other condition (g′)2

g2
+ h′′

h
= 0, we have that (g′)2

g2
=

−h′′

h
= λ. If we assume and therefore h(x2) = c4e

√
λx2 + c5e

−
√
λx2 and g(x1) = c6e

i
√

(λ)x1 .

Notice that if we take λ < 0, then g(x1) = c6e
√

(−λ)x1 and h(x2) = c4e
i
√
−λx2 + c5e

−i
√
−λx2 ,

which are similar to the equations from the first condition. Now, since we want any solution
of this this PDE, we can take µ = 1 and −λ = 1. So, we have that from the first condition,

g(x1) = c1e
x1 + c2e

−x1 and h(x2) = c3e
ix2
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while the second condition gives us that

g(x1) = c6e
x1 and h(x2) = c4e

ix2 + c5e
−ix2 .

Since we need our solution to satisfy both of these conditions, we need c2 = c5 = 0, c1 = c6,
and c3 = c4; then the solution will satisfy the PDE. So, we can take c1 = c6 = 1, and
c3 = c4 = 1, giving us that g(x1) = ex1 and h(x2) = eix2 . Thus,

u(x1, x2) = g(x1)h(x2) = ex1eix2 = ex1+ix2

is a solution of the PDE.

To check that this is indeed a solution, we note that ux1 = ux1x1 = u, ux2 = iu, ux2x2 =
−u, and ux1x2 = iu. So, we have that

u2x1ux1x1 + 2ux1ux2ux1x2 + u2x2ux2x2 = u2u+ 2u(iu)(iu) + (iu)2(−u)

= u3 − 2u3 + u3

= 0.

Thus, u(x1, x2) = ex1+ix2 is a solution of the PDE.
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4.7 Consider the viscous conservation law

ut + F (u)x − auxx = 0 in R× (0,∞), (2)

where a > 0 and F is uniformly convex.

(a) Show u solves (2) if u(x, t) = v(x− σt) and v is defined implicitly by the formula

s =

ˆ v(s)

c

a

F (z)− σz + b
dz (s ∈ R),

where b and c are constants.

Proof. For u(x, t) = v(x− σt), (2) becomes

−σv′ + F (v)v′ − auxx = 0.

From this, we can see that −σv + F (v)− av′ must be constant, so −σv + F (v)− av′ = −b
for some constant b. So, v′ = −σv+F (v)+b

a
. We can rearrange this equation as

1

v′
=

a

−σv + F (v) + b
.

Then, we can integrate both sides from v(0) to v(s) to get that

ˆ v(s)

v(0)

ds

dv
dv =

ˆ v(s)

v(0)

a

F (z)− σz + b
dz,

where
´ v(s)
v(0)

ds
dv
dv = s− 0 = s. Thus, we get the implicit formula for s defined by

s =

ˆ v(s)

v(0)

a

F (z)− σz + b
dz.

So, v(0) = c as some constant, we have that

s =

ˆ v(s)

c

a

F (z)− σz + b
dz

is implicit formula for constants b and c that provides a solution to (2).
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(b) Demonstrate that we can find a traveling wave satisfying

lim
s→−∞

v(s) = ul, lim
s→∞

v(s) = ur

for ul > ur, if and only if

σ =
F (ul)− F (ur)

ul − ur
.

Proof. (→) Suppose lims→−∞ v(s) = ul and lims→∞ v(s) = ur. This means that we have
horizontal asymptotes, so lims→±∞ v

′(s) = 0. From (a), we found that−σv+F (v)−av′ = −b.
So, as s → ∞, this gives us that −σur + F (ur) = −b. Similarly, as s → −∞, this gives us
that −σul + F (ul) = −b. Combining these two equations, we have that −σur + F (ur) =
−σul + F (ul) or equivalently,

σ =
F (ul)− F (ur)

ul − ur
.

(←) Suppose σ = F (ul)−F (ur)
ul−ur

. To show that we can find a traveling wave solution, v,
satisfying

lim
s→−∞

v(s) = ul, lim
s→∞

v(s) = ur,

we must first consider the first-order ODE from part (a) and show that a profile v exists that
connects an unstable equilibrium to a stable one. From part (a), we have that a traveling

wave solution must satisfy that v′ =
−F (ul)−F (ur)

ul−ur
v+F (v)+b

a
for some constant b. Rearranging,

we get the following first-order ODE:

av′ = −F (ul)− F (ur)

ul − ur
v + F (v) + b.

The equilibria of this ODE occur when −F (ul)−F (ur)
ul−ur

v+F (v) + b = 0. We can rearrange this

as F (v) = F (ul)−F (ur)
ul−ur

v − b so that the right-hand side of the equation is linear with a slope
equal to the average slope of F between ur to ul. In order for a traveling wave solution to
exist with the desired limits, we need the two equilibria to be ul and ur, with ul > ur. To
check that such a wave exists, we will first choose b so that ur is an equilibrium and then
show that ul is also an equilibrium.

So, if we choose b appropriately so that ur is an equilibrium, we have that

F (ur) =
F (ul)− F (ur)

ul − ur
ur − b,

so b = F (ul)−F (ur)
ul−ur

ur − F (ur). Substituting this value of b back into the the equilibrium
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condition, we get that

F (v) =
F (ul)− F (ur)

ul − ur
v − F (ul)− F (ur)

ul − ur
ur − F (ur)

=
F (ul)− F (ur)

ul − ur
(v − ur)− F (ur).

So, this implies that if v satisfies

F (v)− F (ur)

v − ur
=
F (ul)− F (ur)

ul − ur
,

then v is an equilibrium. From this equality, we see that ul is also an equilibrium for this
choice of b. So, if we choose b so that ur is an equilibrium, ul is automatically an equilibrium
as well.

Now, we must show that in this case, the traveling wave satisfies the limit conditions.
Since F is uniformly convex, F (v) < F (ul)−F (ur)

ul−ur
v − b for all v ∈ (ur, ul) and F ′′(v) > 0 for

all v. This means that for ur < v < ul,
F (ul)−F (ur)

ul−ur
v − b > F (v), while for v < ur or v > ul,

F (ul)−F (ur)
ul−ur

v − b < F (v). Then, since a > 0, this implies that v′ < 0 for ur < v < ul and
v′ > 0 for v < ur or v > ul. Thus, v = ur is a stable equilibrium and v = ul is an unstable
equilibrium for this ODE.

So, with this choice of b, we can find a solution, v, that connects ul, which is an unstable
equilibrium of the ODE, to ur, a stable equilibrium of the ODE. With any initial condition,
v0, such that ur < v0 < ul, the solution goes to ur as t → ∞ and goes to ul as t → −∞.
Thus, we can find a traveling wave solution such that

lim
s→−∞

v(s) = ul, lim
s→∞

v(s) = ur.
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(c) Let uε denote the above traveling wave solution of (2) for a = ε, with uε(0, 0) = ul−ur
2

.
Compute limε→0 u

ε and explain your answer.

Proof. From the integral,

s =

ˆ v(s)

c

a

F (z)− σz + b
dz

with

σ =
F (ul)− F (ur)

ul − ur
,

we consider v(s) ∈ (ur, ul). As v(s)→ ul or v(s)→ ur, the denominator goes to 0, meaning
that s→ ∓∞. So, we can fix s 6= 0 in this formula, substituting a = ε. So, we have

s

ε
=

ˆ uε(s)

c

1

F (z)− σz + b
dz.

Taking the limit as ε→ 0, the LHS goes to ±∞ depending on the sign of s, so on the RHS,
uε → ur or uε → ul depending on the sign of s. So, as ε → 0, this solution uε converges to
our implicit traveling wave solution v from parts (a) and (b) with initial condition uε(0, 0) =
ul+ur

2
.
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Extra Problems

1. Apply separation of variables to the Telegraph equation, pg 4, to find solutions that are
bounded for all x and all positive t.

Proof. The telegraph equation is given by

utt + 2dut − uxx = 0.

We will apply separation of variables to look for a solution of the form u(x, t) = g(x)h(t).
With this form, the telegraph equation becomes gh′′ + 2dgh′ − g′′h = 0. By factoring out g
from the first two terms and rearranging the equation, we get that

h′′ + 2dh′

h
=
g′′

g
= µ

for some constant µ. These equations are equal to some constant because the equality holds
for all (x, t). Using this fact, we can separate this equation into two ODEs, g′′ = µg and
h′′ + 2dh′ = µh.

For g′′ = µg, we get that g(x) = c1e
√
µx + c2e

−√µx for some constants c1, c2. For h′′ +
2dh′ = µh, we can write out the characteristic polynomial m2 + 2dm − µ = 0 and get that

m = −d±
√
d2 + µ. So, h(t) = c3e

−dt+t
√
d2+µ + c4e

−dt−t
√
d2+µ for some constants c3, c4.

Thus, we have solutions to the telegraph equation given by

u(x, t) = g(x)h(t) = (c1e
√
µx + c2e

−√µx)(c3e
−dt+t
√
d2+µ + c4e

−dt−t
√
d2+µ).

These solutions are bounded for all x and positive t. Taking µ, c1, c2, c3, c4 = 1, we can obtain
an explicit bounded solution to the Telegraph equation

u(x, t) = ex−dt+t
√
d2+1 + e−x−dt+t

√
d2+1 + ex−dt−t

√
d2+1 + e−x−dt−t

√
d2+1.
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2. Use the Fourier transform to solve the Telegraph equation with initial data u(x; 0) = f(x)
and ut(x; 0) = g(x). What must you assume about f, g?

Proof. As in the previous problem, the telegraph equation is given by

utt + 2dut − uxx = 0.

In order to use the Fourier Transform to solve this equation, we must assume that we can
take the Fourier Transform of the initial conditions. So, we must assume that f, g ∈ L2(Rn.
Then, taking the Fourier Transform with respect to the spatial variables, we get that

ûtt + 2dût + |y|2û = 0

with initial conditions û = f̂ and ût = ĝ. We can solve this ODE using the characteristic
polynomial m2 + 2dm+ |y|2 = 0, giving us that

m =
−2d±

√
4d2 − 4|y|2
2

= −d±
√
d2 − |y|2.

Since y is a variable, this value may be real or complex depending on y. So, we must consider
both of these cases, meaning that the general solution of this ODE is

û(y, t) =

{
c1e

(−d+
√
d2−|y|2)t + c2e

(−d−
√
d2−|y|2)t for |y| ≤ d

c1e
(−d+i
√
d2−|y|2)t + c2e

(−d−i
√
d2−|y|2)t for |y| > d

for some constants c1 and c2. To enforce the initial conditions, we choose c1 and c2 to satisfy
that

f̂ = c1 + c2

so that û = f̂ at t = 0. Additionally, we need ût = ĝ, so differentiating û with respect to t
and setting t = 0, we get that

ût(y, 0) = ĥ(y) =

{
c1(−d+

√
d2 − |y|2) + c2(−d−

√
d2 − |y|2) for |y| ≤ d

c1(−d+ i
√
d2 − |y|2) + c2(−d− i

√
d2 − |y|2) for |y| > d

So, by choosing c1 and c2 to satisfy these conditions, we can then take the inverse Fourier
Transform of both sides and obtain that

u(x, t) =
1

(2π)1/2

ˆ
{|y|≤d}

eixyc1e
(−d+
√
d2−|y|2)t + eixyc2e

(−d−
√
d2−|y|2)t

+
1

(2π)1/2

ˆ
{|y|>d}

eixyc1e
(−d+i
√
d2−|y|2)t + eixyc2e

(−d−i
√
d2−|y|2)t

=
e−dt

(2π)1/2

ˆ
{|y|≤d}

c1e
ixy+t
√
d2−|y|2 + c2e

ixy+t
√
d2−|y|2

+
e−dt

(2π)1/2

ˆ
{|y|>d}

c1e
ixy+it

√
d2−|y|2 + c2e

ixy−it
√
d2−|y|2 .

This is a solution to the Telegraph equation using the Fourier Transform.
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