Arizona State University

Student: Brian Sweeney
Course: APM 502
Program: Mathematics MA

Instructor: Hal Smith
Date: Spring 2020

APM 502 (Differential Equations II) Project

Brian Sweeney
2.7 Use Poisson's formula for the ball to prove

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

whenever u is positive and harmonic in $B^{0}(0, r)$. This is an explicit form of Harnack's inequality.

Proof.

Poisson's formula for the ball is

$$
u(x)=\frac{r^{2}-|x|^{2}}{n \alpha(n) r} \int_{\partial B(0, r)} \frac{g(y)}{|x-y|^{n}} d S(y), x \in B^{0}(0, r)
$$

Using the average value over the integral, this formula can be rewritten as

$$
u(x)=r^{n-2}\left(r^{2}-|x|^{2}\right)_{\partial B(0, r)} \frac{g(y)}{|x-y|^{n}} d S(y) .
$$

Then, we can compute that

$$
u(0)=r^{n}{ }_{\partial B(0, r)} \frac{g(y)}{|y|^{n}} d S(y)={ }_{\partial B(0, r)} g(y) d S(y)
$$

since $|y|=r$ on $\partial B(0, r)$. Additionally, we note that for $y \in \partial B(0, r),|x-y| \geq||x|-|y||=$ $||x|-r|=r-|x|$ and $|x-y| \leq|x|+|y|=r+|x|$. Thus,

$$
{ }_{\partial B(0, r)} \frac{g(y)}{(r+|x|)^{n}} d S(y) \leq_{\partial B(0, r)} \frac{g(y)}{|x-y|^{n}} d S(y) \leq_{\partial B(0, r)} \frac{g(y)}{(r-|x|)^{n}} d S(y)
$$

Combining these facts, we have that

$$
\begin{aligned}
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) & =r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} \quad g(y) d S(y) \\
& =r^{n-2} \frac{r^{2}-|x|^{2}}{(r+|x|)^{n}} \quad \underset{\partial B(0, r)}{ } g(y) d S(y) \\
& =r^{n-2}\left(r^{2}-|x|^{2}\right) \\
& \leq r^{2 B(0, r)} \frac{g(y)}{(r+|x|)^{n}} d S(y) d S(y) \\
& \leq r^{n-2}\left(r^{2}-|x|^{2}\right) \\
& =u(x) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0) & =r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} \quad g(y) d S(y) \\
& =r^{n-2} \frac{r^{2}-|x|^{2}}{(r-|x|)^{n}} \quad{ }_{\partial B(0, r)} g(y) d S(y) \\
& =r^{n-2}\left(r^{2}-|x|^{2}\right) \quad{ }_{\partial B(0, r)} \frac{g(y)}{(r-|x|)^{n}} d S(y) d S(y) \\
& \geq r^{n-2}\left(r^{2}-|x|^{2}\right) \quad{ }_{\partial B(0, r)} \frac{g(y)}{|x-y|^{n}} d S(y) \\
& =u(x) .
\end{aligned}
$$

Thus, we have shown that

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0) .
$$

2.23 Let S denote the square lying in $\mathbb{R} \mathrm{x}(0, \infty)$ with corners at the points $(0,1),(1,2),(0,3),(-1,2)$. Define

$$
f(x, t):= \begin{cases}-1 & \text { for }(x, t) \in S \cap\{t>x+2\} \\ 1 & \text { for }(x, t) \in S \cap\{t<x+2\} \\ 0 & \text { otherwise }\end{cases}
$$

Assume u solves

$$
\begin{cases}u_{t t}-u_{x x}=f & \text { in } \mathbb{R} \times(0, \infty) \\ u=0, u_{t}=0 & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

Describe the shape of u for times $t>3$.
Proof. Using Duhamel's principle for the 1D wave equation, we have that the solution to this nonhomogeneous problem is given by

$$
u(x, t)=\int_{0}^{t} \frac{1}{2} \int_{x-s}^{x+s} f(y, t-s) d y d s=\frac{1}{2} \int_{0}^{t} \int_{x-s}^{x+s} f(y, t-s) d y d s
$$

This formula can be interpreted in a similar manner to the 1D wave equation, where $u(x, t)$ is equal to the integral of f over the triangular region in $\mathbb{R} \times(0, \infty)$ defined by the double integral. From the way f is defined, if the entire square S is within this triangle, the integral is zero since the two sections cancel each other out. Additionally, since S is divided by the line $t=x+2$, any region that crosses this line perpendicularly will also integrate to zero since different sections of f cancel out. This happens for triangles where $x<-1$. So, $u(x, t)$ is only nonzero when this triangular region contains only part of S, with the separate sections not canceling out.

This happens in a region that is parallel to the line $t=x+2$ in $\mathbb{R} \mathrm{x}(0, \infty)$, since (x, t) in this region contain only part of S in a way that the values of f do not cancel out. In particular, for these (x, t) the triangular region contains more of the positive section, and the closer to the line $t=x+2$ this edge is, the larger the value of $u(x, t)$. So, this gives a wave along this corridor in $\mathbb{R} \times(0, \infty)$ that is one unit wide corresponding to the width of S.

So, for times $t>3$, the shape of u is a mostly flat zero-valued function with a single right-moving wave. This wave is centered at $x=t-2$ and has width 1 .

3.4

(a) Write down the characteristic equations for the PDE

$$
\begin{equation*}
u_{t}+b \cdot D u=f \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}
\end{equation*}
$$

where $b \in \mathbb{R}^{n}, f=f(x, t)$.
Proof. The characteristic equations are

$$
\frac{\partial x_{i}}{\partial \tau}=b_{i}, \frac{\partial t}{\partial \tau}=1, \frac{\partial U}{\partial \tau}=f(x, t)
$$

(b) Use the characteristic ODE to solve (1) subject to the initial condition

$$
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
$$

Proof. We will parameterize this initial condition by defining $x_{i}(0)=a$. Then, the initial conditions are $x_{i}(0)=a, t(0)=0$, and $U(0)=g(a)$. So, we have three separable PDEs with solutions given by

$$
\begin{gathered}
x_{i}(\tau)=b_{i} t+a \\
t(\tau)=\tau \\
U\left(x_{i}(\tau), t(\tau)\right)=U\left(b_{i} \tau+a, \tau\right)=\int_{0}^{\tau} f\left(b_{i} s+a, s\right) d s+g(a)
\end{gathered}
$$

Using the functions for x_{i} and τ, we can deduce that $\tau=t$ and $a=x_{i}-b_{i} t$. So,

$$
\begin{aligned}
u\left(x_{i}, t\right)=U\left(x_{i}, t\right) & =\int_{0}^{t} f\left(b_{i} s+x_{i}-b_{i} t, s\right) d s+g\left(x_{i}-b_{i} t\right) \\
& =\int_{0}^{t} f\left(x_{i}+(s-t) b_{i}, s\right) d s+g\left(x_{i}-b_{i} t\right)
\end{aligned}
$$

Thus, $u(x, t)=g(x-b t)+\int_{0}^{t} f(x+(s-t) b, s) d s$.
3.8 Confirm that the formula $u=g\left(x-t \mathbf{F}^{\prime}(u)\right)$ provides an implicit solution for the conservation law

$$
u_{t}+\operatorname{div} \mathbf{F}(u)=0
$$

Proof. We can compute that

$$
\begin{aligned}
u_{t} & =-g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right)\left(\mathbf{F}^{\prime}(u)+t \mathbf{F}^{\prime \prime}(u) u_{t}\right) \\
& =-g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) \mathbf{F}^{\prime}(u)-g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime \prime}(u) u_{t} .
\end{aligned}
$$

Then, solving for u_{t}, we get that

$$
u_{t}=\frac{-g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) \mathbf{F}^{\prime}(u)}{1+g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime \prime}(u)}
$$

Similarly, to compute $\operatorname{div} \mathbf{F}(u)$, we have that

$$
\begin{aligned}
u_{x_{i}} & =g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right)\left(1-t \mathbf{F}^{\prime}(u)_{x_{i}} u_{x_{i}}\right) \\
& =g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right)-g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime}(u)_{x_{i}} u_{x_{i}} .
\end{aligned}
$$

Then, solving for $u_{x_{i}}$, we have that

$$
u_{x_{i}}=\frac{g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right)}{1+g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime}(u)_{x_{i}}} .
$$

So, $\operatorname{div} \mathbf{F}(u)=\mathbf{F}^{\prime}(u) \sum_{i=1}^{n} u_{x_{i}}$, meaning that

$$
\operatorname{div} \mathbf{F}(u)=\mathbf{F}^{\prime}(u) \frac{g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right)}{1+g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime \prime}(u)}
$$

So, we have that

$$
\begin{aligned}
u_{t}+\operatorname{div} \mathbf{F}(u) & =\frac{-g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) \mathbf{F}^{\prime}(u)}{1+g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime \prime}(u)}+\mathbf{F}^{\prime}(u) \frac{g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right)}{1+g^{\prime}\left(x-t \mathbf{F}^{\prime}(u)\right) t \mathbf{F}^{\prime \prime}(u)} \\
& =0
\end{aligned}
$$

Thus, the formula $u=g\left(x-t \mathbf{F}^{\prime}(u)\right)$ provides an implicit solution to the conservation law.
4.1 Use separation of variables to find a nontrivial solution u of the PDE

$$
u_{x_{1}}^{2} u_{x_{1} x_{1}}+2 u_{x_{1}} u_{x_{2}} u_{x_{1} x_{2}}+u_{x_{2}}^{2} u_{x_{2} x_{2}}=0 \text { in } \mathbb{R}^{2}
$$

Proof. We will look for a solution of the form

$$
u\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)
$$

So, $u_{x_{1}}=g^{\prime} h, u_{x_{2}}=g h^{\prime}, u_{x_{1} x_{1}}=g^{\prime \prime} h, u_{x_{2} x_{2}}=g h^{\prime \prime}, u_{x_{1} x_{2}}=g^{\prime} h^{\prime}$. Thus, we have that

$$
\left(g^{\prime} h\right)^{2} g^{\prime \prime} h+2 g^{\prime} h g h^{\prime} g^{\prime} h^{\prime}+\left(g h^{\prime}\right)^{2} g h^{\prime \prime}=0
$$

Equivalently, this gives us that

$$
\left(g^{\prime}\right)^{2} g^{\prime \prime} h^{3}+2\left(g^{\prime}\right)^{2}\left(h^{\prime}\right)^{2} g h+g^{3}\left(h^{\prime}\right)^{2} h^{\prime \prime}=0 .
$$

Dividing through by $g^{3} h^{3}$, we have that

$$
\frac{\left(g^{\prime}\right)^{2} g^{\prime \prime}}{g^{3}}+\frac{2\left(g^{\prime}\right)^{2}\left(h^{\prime}\right)^{2}}{g^{2} h^{2}}+\frac{\left(h^{\prime}\right)^{2} h^{\prime \prime}}{h^{3}}=0 .
$$

We can factor this into two terms as

$$
\frac{\left(g^{\prime}\right)^{2}}{g^{2}}\left(\frac{g^{\prime \prime}}{g}+\frac{\left(h^{\prime}\right)^{2}}{h^{2}}\right)+\frac{\left(h^{\prime}\right)^{2}}{h^{2}}\left(\frac{\left(g^{\prime}\right)^{2}}{g^{2}}+\frac{h^{\prime \prime}}{h}\right)=0 .
$$

Since we are looking for nontrivial solutions, $\frac{\left(g^{\prime}\right)^{2}}{g^{2}} \neq 0$ and $\frac{\left(h^{\prime}\right)^{2}}{h^{2}} \neq 0$. So, to satisfy this above equality we can look for functions g, h such that $\frac{g^{\prime \prime}}{g}+\frac{\left(h^{\prime}\right)^{2}}{h^{2}}=0$ and $\frac{\left(g^{\prime}\right)^{2}}{g^{2}}+\frac{h^{\prime \prime}}{h}=0$. From the first of these equalities, we get that

$$
\frac{g^{\prime \prime}}{g}=-\frac{\left(h^{\prime}\right)^{2}}{h^{2}}=\mu
$$

so we can separate the variables into two ODEs, $\frac{g^{\prime \prime}}{g}=\mu$ and $-\frac{\left(h^{\prime}\right)^{2}}{h^{2}}=\mu$. For now, we will assume $\mu>0$. Then, we get that $g\left(x_{1}\right)=c_{1} e^{\sqrt{\mu} x_{1}}+c_{2} e^{-\sqrt{\mu} x_{1}}$ and $h\left(x_{2}\right)=c_{3} e^{i \sqrt{(\mu) x_{2}}}$ for constants c_{1}, c_{2}, c_{3}, μ.

Following a similar approach for the other condition $\frac{\left(g^{\prime}\right)^{2}}{g^{2}}+\frac{h^{\prime \prime}}{h}=0$, we have that $\frac{\left(g^{\prime}\right)^{2}}{g^{2}}=$ $-\frac{h^{\prime \prime}}{h}=\lambda$. If we assume and therefore $h\left(x_{2}\right)=c_{4} e^{\sqrt{\lambda} x_{2}}+c_{5} e^{-\sqrt{\lambda} x_{2}}$ and $g\left(x_{1}\right)=c_{6} e^{i \sqrt{(\lambda) x_{1}}}$. Notice that if we take $\lambda<0$, then $g\left(x_{1}\right)=c_{6} e^{\sqrt{(-\lambda) x_{1}}}$ and $h\left(x_{2}\right)=c_{4} e^{i \sqrt{-\lambda} x_{2}}+c_{5} e^{-i \sqrt{-\lambda} x_{2}}$, which are similar to the equations from the first condition. Now, since we want any solution of this this PDE, we can take $\mu=1$ and $-\lambda=1$. So, we have that from the first condition,

$$
g\left(x_{1}\right)=c_{1} e^{x_{1}}+c_{2} e^{-x_{1}} \text { and } h\left(x_{2}\right)=c_{3} e^{i x_{2}}
$$

while the second condition gives us that

$$
g\left(x_{1}\right)=c_{6} e^{x_{1}} \text { and } h\left(x_{2}\right)=c_{4} e^{i x_{2}}+c_{5} e^{-i x_{2}} .
$$

Since we need our solution to satisfy both of these conditions, we need $c_{2}=c_{5}=0, c_{1}=c_{6}$, and $c_{3}=c_{4}$; then the solution will satisfy the PDE. So, we can take $c_{1}=c_{6}=1$, and $c_{3}=c_{4}=1$, giving us that $g\left(x_{1}\right)=e^{x_{1}}$ and $h\left(x_{2}\right)=e^{i x_{2}}$. Thus,

$$
u\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)=e^{x_{1}} e^{i x_{2}}=e^{x_{1}+i x_{2}}
$$

is a solution of the PDE.
To check that this is indeed a solution, we note that $u_{x_{1}}=u_{x_{1} x_{1}}=u, u_{x_{2}}=i u, u_{x_{2} x_{2}}=$ $-u$, and $u_{x_{1} x_{2}}=i u$. So, we have that

$$
\begin{aligned}
u_{x_{1}}^{2} u_{x_{1} x_{1}}+2 u_{x_{1}} u_{x_{2}} u_{x_{1} x_{2}}+u_{x_{2}}^{2} u_{x_{2} x_{2}} & =u^{2} u+2 u(i u)(i u)+(i u)^{2}(-u) \\
& =u^{3}-2 u^{3}+u^{3} \\
& =0 .
\end{aligned}
$$

Thus, $u\left(x_{1}, x_{2}\right)=e^{x_{1}+i x_{2}}$ is a solution of the PDE.
4.7 Consider the viscous conservation law

$$
\begin{equation*}
u_{t}+F(u)_{x}-a u_{x x}=0 \text { in } \mathbb{R} \times(0, \infty), \tag{2}
\end{equation*}
$$

where $a>0$ and F is uniformly convex.
(a) Show u solves (2) if $u(x, t)=v(x-\sigma t)$ and v is defined implicitly by the formula

$$
s=\int_{c}^{v(s)} \frac{a}{F(z)-\sigma z+b} d z(s \in \mathbb{R})
$$

where b and c are constants.
Proof. For $u(x, t)=v(x-\sigma t)$, (2) becomes

$$
-\sigma v^{\prime}+F(v) v^{\prime}-a u_{x x}=0 .
$$

From this, we can see that $-\sigma v+F(v)-a v^{\prime}$ must be constant, so $-\sigma v+F(v)-a v^{\prime}=-b$ for some constant b. So, $v^{\prime}=\frac{-\sigma v+F(v)+b}{a}$. We can rearrange this equation as

$$
\frac{1}{v^{\prime}}=\frac{a}{-\sigma v+F(v)+b} .
$$

Then, we can integrate both sides from $v(0)$ to $v(s)$ to get that

$$
\int_{v(0)}^{v(s)} \frac{d s}{d v} d v=\int_{v(0)}^{v(s)} \frac{a}{F(z)-\sigma z+b} d z
$$

where $\int_{v(0)}^{v(s)} \frac{d s}{d v} d v=s-0=s$. Thus, we get the implicit formula for s defined by

$$
s=\int_{v(0)}^{v(s)} \frac{a}{F(z)-\sigma z+b} d z .
$$

So, $v(0)=c$ as some constant, we have that

$$
s=\int_{c}^{v(s)} \frac{a}{F(z)-\sigma z+b} d z
$$

is implicit formula for constants b and c that provides a solution to (2).
(b) Demonstrate that we can find a traveling wave satisfying

$$
\lim _{s \rightarrow-\infty} v(s)=u_{l}, \lim _{s \rightarrow \infty} v(s)=u_{r}
$$

for $u_{l}>u_{r}$, if and only if

$$
\sigma=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}}
$$

Proof. (\rightarrow) Suppose $\lim _{s \rightarrow-\infty} v(s)=u_{l}$ and $\lim _{s \rightarrow \infty} v(s)=u_{r}$. This means that we have horizontal asymptotes, so $\lim _{s \rightarrow \pm \infty} v^{\prime}(s)=0$. From (a), we found that $-\sigma v+F(v)-a v^{\prime}=-b$. So, as $s \rightarrow \infty$, this gives us that $-\sigma u_{r}+F\left(u_{r}\right)=-b$. Similarly, as $s \rightarrow-\infty$, this gives us that $-\sigma u_{l}+F\left(u_{l}\right)=-b$. Combining these two equations, we have that $-\sigma u_{r}+F\left(u_{r}\right)=$ $-\sigma u_{l}+F\left(u_{l}\right)$ or equivalently,

$$
\sigma=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}}
$$

(\leftarrow) Suppose $\sigma=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}}$. To show that we can find a traveling wave solution, v, satisfying

$$
\lim _{s \rightarrow-\infty} v(s)=u_{l}, \lim _{s \rightarrow \infty} v(s)=u_{r}
$$

we must first consider the first-order ODE from part (a) and show that a profile v exists that connects an unstable equilibrium to a stable one. From part (a), we have that a traveling wave solution must satisfy that $v^{\prime}=\frac{-\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v+F(v)+b}{a}$ for some constant b. Rearranging, we get the following first-order ODE:

$$
a v^{\prime}=-\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v+F(v)+b .
$$

The equilibria of this ODE occur when $-\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v+F(v)+b=0$. We can rearrange this as $F(v)=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v-b$ so that the right-hand side of the equation is linear with a slope equal to the average slope of F between u_{r} to u_{l}. In order for a traveling wave solution to exist with the desired limits, we need the two equilibria to be u_{l} and u_{r}, with $u_{l}>u_{r}$. To check that such a wave exists, we will first choose b so that u_{r} is an equilibrium and then show that u_{l} is also an equilibrium.

So, if we choose b appropriately so that u_{r} is an equilibrium, we have that

$$
F\left(u_{r}\right)=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} u_{r}-b,
$$

so $b=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} u_{r}-F\left(u_{r}\right)$. Substituting this value of b back into the the equilibrium
condition, we get that

$$
\begin{aligned}
F(v) & =\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v-\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} u_{r}-F\left(u_{r}\right) \\
& =\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}}\left(v-u_{r}\right)-F\left(u_{r}\right) .
\end{aligned}
$$

So, this implies that if v satisfies

$$
\frac{F(v)-F\left(u_{r}\right)}{v-u_{r}}=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}},
$$

then v is an equilibrium. From this equality, we see that u_{l} is also an equilibrium for this choice of b. So, if we choose b so that u_{r} is an equilibrium, u_{l} is automatically an equilibrium as well.

Now, we must show that in this case, the traveling wave satisfies the limit conditions. Since F is uniformly convex, $F(v)<\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v-b$ for all $v \in\left(u_{r}, u_{l}\right)$ and $F^{\prime \prime}(v)>0$ for all v. This means that for $u_{r}<v<u_{l}, \frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v-b>F(v)$, while for $v<u_{r}$ or $v>u_{l}$, $\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} v-b<F(v)$. Then, since $a>0$, this implies that $v^{\prime}<0$ for $u_{r}<v<u_{l}$ and $v^{\prime}>0$ for $v<u_{r}$ or $v>u_{l}$. Thus, $v=u_{r}$ is a stable equilibrium and $v=u_{l}$ is an unstable equilibrium for this ODE.

So, with this choice of b, we can find a solution, v, that connects u_{l}, which is an unstable equilibrium of the ODE, to u_{r}, a stable equilibrium of the ODE. With any initial condition, v_{0}, such that $u_{r}<v_{0}<u_{l}$, the solution goes to u_{r} as $t \rightarrow \infty$ and goes to u_{l} as $t \rightarrow-\infty$. Thus, we can find a traveling wave solution such that

$$
\lim _{s \rightarrow-\infty} v(s)=u_{l}, \lim _{s \rightarrow \infty} v(s)=u_{r}
$$

(c) Let u^{ϵ} denote the above traveling wave solution of (2) for $a=\epsilon$, with $u^{\epsilon}(0,0)=\frac{u_{l}-u_{r}}{2}$. Compute $\lim _{\epsilon \rightarrow 0} u^{\epsilon}$ and explain your answer.

Proof. From the integral,

$$
s=\int_{c}^{v(s)} \frac{a}{F(z)-\sigma z+b} d z
$$

with

$$
\sigma=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}}
$$

we consider $v(s) \in\left(u_{r}, u_{l}\right)$. As $v(s) \rightarrow u_{l}$ or $v(s) \rightarrow u_{r}$, the denominator goes to 0 , meaning that $s \rightarrow \mp \infty$. So, we can fix $s \neq 0$ in this formula, substituting $a=\epsilon$. So, we have

$$
\frac{s}{\epsilon}=\int_{c}^{u^{\epsilon}(s)} \frac{1}{F(z)-\sigma z+b} d z
$$

Taking the limit as $\epsilon \rightarrow 0$, the LHS goes to $\pm \infty$ depending on the sign of s, so on the RHS, $u^{\epsilon} \rightarrow u_{r}$ or $u^{\epsilon} \rightarrow u_{l}$ depending on the sign of s. So, as $\epsilon \rightarrow 0$, this solution u^{ϵ} converges to our implicit traveling wave solution v from parts (a) and (b) with initial condition $u^{\epsilon}(0,0)=$ $\frac{u_{l}+u_{r}}{2}$.

Extra Problems

1. Apply separation of variables to the Telegraph equation, pg 4, to find solutions that are bounded for all x and all positive t.

Proof. The telegraph equation is given by

$$
u_{t t}+2 d u_{t}-u_{x x}=0
$$

We will apply separation of variables to look for a solution of the form $u(x, t)=g(x) h(t)$. With this form, the telegraph equation becomes $g h^{\prime \prime}+2 d g h^{\prime}-g^{\prime \prime} h=0$. By factoring out g from the first two terms and rearranging the equation, we get that

$$
\frac{h^{\prime \prime}+2 d h^{\prime}}{h}=\frac{g^{\prime \prime}}{g}=\mu
$$

for some constant μ. These equations are equal to some constant because the equality holds for all (x, t). Using this fact, we can separate this equation into two ODEs, $g^{\prime \prime}=\mu g$ and $h^{\prime \prime}+2 d h^{\prime}=\mu h$.

For $g^{\prime \prime}=\mu g$, we get that $g(x)=c_{1} e^{\sqrt{\mu} x}+c_{2} e^{-\sqrt{\mu} x}$ for some constants c_{1}, c_{2}. For $h^{\prime \prime}+$ $2 d h^{\prime}=\mu h$, we can write out the characteristic polynomial $m^{2}+2 d m-\mu=0$ and get that $m=-d \pm \sqrt{d^{2}+\mu}$. So, $h(t)=c_{3} e^{-d t+t \sqrt{d^{2}+\mu}}+c_{4} e^{-d t-t \sqrt{d^{2}+\mu}}$ for some constants c_{3}, c_{4}.

Thus, we have solutions to the telegraph equation given by

$$
u(x, t)=g(x) h(t)=\left(c_{1} e^{\sqrt{\mu} x}+c_{2} e^{-\sqrt{\mu} x}\right)\left(c_{3} e^{-d t+t \sqrt{d^{2}+\mu}}+c_{4} e^{-d t-t \sqrt{d^{2}+\mu}}\right)
$$

These solutions are bounded for all x and positive t. Taking $\mu, c_{1}, c_{2}, c_{3}, c_{4}=1$, we can obtain an explicit bounded solution to the Telegraph equation

$$
u(x, t)=e^{x-d t+t \sqrt{d^{2}+1}}+e^{-x-d t+t \sqrt{d^{2}+1}}+e^{x-d t-t \sqrt{d^{2}+1}}+e^{-x-d t-t \sqrt{d^{2}+1}}
$$

2. Use the Fourier transform to solve the Telegraph equation with initial data $u(x ; 0)=f(x)$ and $u_{t}(x ; 0)=g(x)$. What must you assume about f, g ?

Proof. As in the previous problem, the telegraph equation is given by

$$
u_{t t}+2 d u_{t}-u_{x x}=0
$$

In order to use the Fourier Transform to solve this equation, we must assume that we can take the Fourier Transform of the initial conditions. So, we must assume that $f, g \in L^{2}\left(\mathbb{R}^{n}\right.$. Then, taking the Fourier Transform with respect to the spatial variables, we get that

$$
\hat{u}_{t t}+2 d \hat{u}_{t}+|y|^{2} \hat{u}=0
$$

with initial conditions $\hat{u}=\hat{f}$ and $\hat{u}_{t}=\hat{g}$. We can solve this ODE using the characteristic polynomial $m^{2}+2 d m+|y|^{2}=0$, giving us that

$$
m=\frac{-2 d \pm \sqrt{4 d^{2}-4|y|^{2}}}{2}=-d \pm \sqrt{d^{2}-|y|^{2}}
$$

Since y is a variable, this value may be real or complex depending on y. So, we must consider both of these cases, meaning that the general solution of this ODE is

$$
\hat{u}(y, t)=\left\{\begin{array}{l}
c_{1} e^{\left(-d+\sqrt{d^{2}-|y|^{2}}\right) t}+c_{2} e^{\left(-d-\sqrt{d^{2}-|y|^{2}}\right) t} \text { for }|y| \leq d \\
c_{1} e^{\left(-d+i \sqrt{d^{2}-|y|^{2}}\right) t}+c_{2} e^{\left(-d-i \sqrt{d^{2}-|y|^{2}}\right) t} \text { for }|y|>d
\end{array}\right.
$$

for some constants c_{1} and c_{2}. To enforce the initial conditions, we choose c_{1} and c_{2} to satisfy that

$$
\hat{f}=c_{1}+c_{2}
$$

so that $\hat{u}=\hat{f}$ at $t=0$. Additionally, we need $\hat{u}_{t}=\hat{g}$, so differentiating \hat{u} with respect to t and setting $t=0$, we get that

$$
\hat{u}_{t}(y, 0)=\hat{h}(y)=\left\{\begin{array}{l}
c_{1}\left(-d+\sqrt{d^{2}-|y|^{2}}\right)+c_{2}\left(-d-\sqrt{d^{2}-|y|^{2}}\right) \text { for }|y| \leq d \\
c_{1}\left(-d+i \sqrt{d^{2}-|y|^{2}}\right)+c_{2}\left(-d-i \sqrt{d^{2}-|y|^{2}}\right) \text { for }|y|>d
\end{array}\right.
$$

So, by choosing c_{1} and c_{2} to satisfy these conditions, we can then take the inverse Fourier Transform of both sides and obtain that

$$
\begin{aligned}
u(x, t) & =\frac{1}{(2 \pi)^{1 / 2}} \int_{\{|y| \leq d\}} e^{i x y} c_{1} e^{\left(-d+\sqrt{d^{2}-|y|^{2}}\right) t}+e^{i x y} c_{2} e^{\left(-d-\sqrt{d^{2}-|y|^{2}}\right) t} \\
& +\frac{1}{(2 \pi)^{1 / 2}} \int_{\{|y|>d\}} e^{i x y} c_{1} e^{\left(-d+i \sqrt{d^{2}-|y|^{2}}\right) t}+e^{i x y} c_{2} e^{\left(-d-i \sqrt{d^{2}-|y|^{2}}\right) t} \\
& =\frac{e^{-d t}}{(2 \pi)^{1 / 2}} \int_{\{|y| \leq d\}} c_{1} e^{i x y+t \sqrt{d^{2}-|y|^{2}}}+c_{2} e^{i x y+t \sqrt{d^{2}-|y|^{2}}} \\
& +\frac{e^{-d t}}{(2 \pi)^{1 / 2}} \int_{\{|y|>d\}} c_{1} e^{i x y+i t \sqrt{d^{2}-|y|^{2}}}+c_{2} e^{i x y-i t \sqrt{d^{2}-|y|^{2}}} .
\end{aligned}
$$

This is a solution to the Telegraph equation using the Fourier Transform.

