1) a) Connely can mow her lawn at a constant rate of $105 \mathrm{ft}^{2} /$ minute, which implies that every minute she can mow $105 \mathrm{ft}^{2}$. Write a sentence that gives a more comprehensive meaning of this value.
b) If L is the total number of ft^{2} that are mowed, and M is the number of minutes she has spent mowing since noon today, what mathematical statement is equivalent to your definition in part a)?
c) Suppose she has mowed for M_{0} minutes since noon and the total amount mowed is $784.6 \mathrm{ft}^{2}$. If she spends a little more time mowning, how much total area is mowed? Write an expression.
d) Below, fully illustrate the part c) situation, if the entire x-axis interval displayed represents only a moment of time containing this situation. Your sketch should include:
i) the two critical correspondence points, labeled with ordered pairs
ii) a representation of all correspondence points of the relationship of L and M within the moment
iii) representations of the changes involved, labeled symbolically and with expressions where possible iv) scales and units on the axes, with locations of all key values designated and labeled. (Use a whole number scale for square feet of lawn mowed.)

2) The graph at right shows r, a function that gives rate of change of height in meters with respect to time for a rocket firework, $t \mathrm{sec}$ after it's launched from a 0.8 m tall concrete pedestal. (ROC values not given.)
a) How many points does the displayed graph show? \qquad
b) Highlight correspondence points of r for $t=0.5 \mathrm{sec}$ and $t=2 \mathrm{sec}$ on the graph, and label them with ordered pairs.
c) Explain the meaning of the 2 nd point $(t=2)$ in a sentence.
d) In at most two sentences, describe the flight of the firework.

e) Express the change in height of the firework from 1 to 1.5 seconds.
(Hint: $\mathrm{d} y=m \mathrm{~d} x$, but variables x, y, and m aren't involved here.)

Do not turn this sheet over until you are instructed to begin.

