\qquad
\qquad

1) Suppose you are considering the relationship of:
x, the number of minutes after 12:00 noon today (independent), and y, the temperature at the MU fountain in Fahrenheit (dependent)
a. Is this relationship a valid function? \qquad Why or why not?
b. - d. Using the function named T and units specified, express the temperature today at the fountain....
b. at 11:50 a.m. \qquad c. h minutes after $12: 15 \mathrm{pm}$ \qquad
d. Use T to express the change in temperature from 1 pm to 2 pm \qquad
e. What variable based on x and/or y could express this same change in temperature? \qquad
f. Write an expression for $y_{\text {NEW }}$, the current temperature, in terms of the temperature some time prior to this, $y_{\text {old }}$. (Don't use function notation, i.e. T.) $y_{\mathrm{NEW}}=$ \qquad
2) Suppose the first command line in a new GC file is the function definition

$$
p(b)=\pi b^{2}
$$

a. Below, write out the keystrokes, in order, that correctly produces the command line at right.
b. Suppose a function g is properly defined in GC. What other mathematical statement, if entered in GC, will produce each of these?
i) the value of g when the value of the indpendent variable is $15 / 7$.
ii) the displayed graph of g for all non-negative values of the independent variable
iii) a displayed correspondance point determined by g when the independent variable $=15 / 7$
iv) a vertical segment extending from the point defined in iii), to the point having the opposite dependent value
v) a horizontal segment extending from the y-axis to the point defined in iii)
c. Explain precisely what you are looking at when viewing a displayed graph, like the one described in 2b ii) above.

