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Introduction

Spherical harmonics are the angular portion of the solution to Laplace’s differential equation
4u = 0, or, equivalently, the solutions to Laplace’s differential equation on the unit sphere.
They form a complete orthonormal basis for functions defined on the surface of a sphere; that
is, any function on the surface of a sphere can be written as a sum of spherical harmonics.

The complex spherical harmonics of degree ` and order m are:

Y m
` (θ, φ) :=

√
2`+ 1

4π

(`−m)!

(`+m)!
eimφPm

` (cos θ)

with Pm
` denoting the associated Legendre functions:

Pm
` (x) = (−1)m(1 − x2)m/2

1

2``!

d(`+m)

dx(`+m)
(x2 − 1)`

Spherical harmonics are widely used in physics, most notably for the solution of the atomic
orbitals of the hydrogen atom, from which the indicies ` and m are well known as the
azimuthal, angular, or orbital (`)and magnetic (m) quantum numbers for atomic orbitals.

Spherical harmonics are also used to efficiently represent directional lightning, shadows, and
matte reflections in computer graphics.

In this project, I will briefly review the derivation, properties, and applications of the spher-
ical harmonics, with emphasis on their use in physics.

Notation and Preliminaries

I will generally follow the notation used by Evans 2010. In this notation, partial derivatives
are denoted with either ∂

∂c
or a coordinate subscript:

ux =
∂

∂x
u uzz =

∂2

∂z2
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the Laplace operator or Laplacian (the divergence of the gradient) is denoted with the symbol
4, for example the Laplacian in three dimensional Cartesian coordinates is:

4u = uxx + uyy + uzz

and functions are generally written without arguments, when doing so isn’t unclear, for
example, I will write 4u instead of 4u(r, θ, φ).

Figure 1: Spherical
Coordinates (Wikipedia
2020)

Because spherical harmonics originated in and often appear in
physics, I will use the notation for spherical coordinates that is
common in physics, as shown in Figure 1, in which:

r is the distance from the origin,

φ is the angle from the x-axis, and

θ is the angle from the z-axis.

and therefore:

x = r sin θ cosφ r =
√
x2 + y2 + z2

y = r sin θ sinφ θ = arccos
(z
r

)
z = r cos θ φ = arctan

(y
z

)
With this notation, the Laplacian in spherical coordinates can be
written in the following forms (among others):

4 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

=
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

a full derivation of which can be found in David 2007.

Solving Laplace’s Equation in Spherical Coordinates

If we consider the ansatz u = R(r)T (θ)F (φ) then the Laplacian of u is:

4u = RrrTF +
2

r
RrTF +

1

r2
TθθRF +

cos θ

r2 sin θ
TθRF +

1

r2 sin2 θ
FφφRT = 0

We can isolate terms in r by multiplying by r2/(RTF ):
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r2
Rrr

R
+

2rRr

R
+
Tθθ
T

+
cos θ

sin θ

Tθ
T

+
1

sin2 θ

Fφφ
F

= 0

and by separation of variables, with a bit of simple algebra, we obtain the system:

r2R′′ + 2rR′ = λR (1)

Tθθ
T

+
cos θ

sin θ

Tθ
T

+
1

sin2 θ

Fφφ
F

= −λ

Equation (1) is a Cauchy-Euler differential equation with solutions of the form R = r`, with
` ≥ 0 (or else the solution is undefined at the origin). Thus `(` − 1)r` + 2`r` = λr`, and
therefore λ = `(`− 1) + 2` = `2 + ` = `(`+ 1), giving the updated system:

r2R′′ + 2rR′ = `(`+ 1)R

Tθθ
T

+
cos θ

sin θ

Tθ
T

+
1

sin2 θ

Fφφ
F

= −`(`+ 1) (2)

Now we multiply equation (2) by sin2 θ and separate again to obtain the system:

r2R′′ + 2rR′ = `(`+ 1)R (3)

(sin2 θ)T ′′ + (sin θ cos θ)T ′ + `(`+ 1)(sin2 θ)T = m2T (4)

F ′′ = −m2F (5)

where the separation constant m2 was chosen, with a bit of foreknowledge, to fit the associ-
ated Legendre functions, as we shall soon see.

The third equation of this system, (5), has the well known solution F (φ) = Ceimφ, and
because φ is a periodic variable, we must have F (φ) = F (φ + k2π) for any k ∈ Z, so
eimk2π = 1 for all k ∈ Z and therefore we must also have m ∈ Z, yielding the solution to the
third equation:

F (φ) = Ceimφ, m ∈ Z.

And we divide the second equation of this system, (4), by sin2 θ and rearrange to obtain:

0 = T ′′ +
cos θ

sin θ
T ′ +

[
`(`+ 1)− m2

sin2 θ

]
T (6)

which is the associated Legendre differential equation whose canonical solutions are the
associated Legendre functions, which I will now briefly digress to introduce properly.

Legendre polynomials and associated Legendre functions

In 1785, Adrien-Marie Legendre investigated the differential equation:

d

dx

[
(1− x2)dy

dx

]
+ `(`+ 1)y = 0
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and found an infinite set of solutions y = Pn, the Legendre polynomials (Legendre 1785),
the first few of which are:

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2

P3(x) = (5x3 − 3x)/2

In 1816, Olinde Rodrigues discovered what is now called Rodrigues’ formula for the Legendre
polynomials:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

A similar differential equation:

d

dx

[
(1− x2)dy

dx

]
+

[
`(`+ 1)− m2

1− x2

]
y = 0 (7)

called the associated Legendre differential equation was later found to have solutions related
to the Legendre polynomials, named associated Legendre functions, and denoted:

Pm
` (x) := (−1)m(1− x2)m/2 d

m

dxm
(P`(x)) = y (8)

If we expand P` in this formula using Rodrigues’ formula, we obtain:

Pm
` (x) = (−1)m(1− x2)m/2 1

2``!

dm

dxm

(
d`

dx`
(x2 − 1)`

)
(9)

= (−1)m(1− x2)m/2 1

2``!

d(`+m)

dx(`+m)
(x2 − 1)` (10)

for ` ∈ Z and m ∈ Z,−` ≤ m ≤ `.

Now (6) is an instance of (7) with x = cos θ and y = T , so we finally obtain:

T = Pm
` (cos θ)

and thus we arrive at the traditional formula for the spherical harmonics:

Y m
` (θ, φ) := T (θ)F (φ) = NeimφPm

` (cos θ)

in which the normalizing constant C has been renamed N as is traditional.
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Note: Condon–Shortley phase

The factor (−1)m in (8), (9), and (10), called the Condon-Shortley phase, is not always
included in the formula for the associated Legendre functions. Sometimes it is instead found
in the definition of the spherical harmonics, and sometimes it is omitted entirely.

Properties

Relation between solutions for positive and negative m

The associated Legendre functions have the following property:

P−m` = (−1)m
(`−m)!

(`+m)!
Pm
`

for which Westra 2020 provides a proof. From this it’s easy to see that:

Y −m` (θ, φ) = Ne−imφ(−1)m
(`−m)!

(`+m)!
Pm
` (cos θ) = e−2imφ(−1)m

(`−m)!

(`+m)!
Y m
`

Orthogonality and Normalization

Westra 2020 also provides a proof that the associated Legendre functions are orthogonal:∫ 1

−1
Pm
k P

m
` dx =

2(`+m)!

(2`+ 1)(`−m)!
δk,`

from which orthogonality of the spherical harmonics follows naturally, with the weighting
function sin θ:∫ 2π

0

dφ

∫ π

0

Y m
k (Y m

` )∗ sin θdθ =

∫ 2π

0

dφ

∫ π

0

(NeimφPm
k (cos θ))(Ne−imφPm

` (cos θ)) sin θdθ

= N2

∫ 2π

0

ei(m−n)φdφ

∫ π

0

Pm
k (cos θ)Pm

` (cos θ) sin θdθ

= 2πN2δm,n

∫ π

0

Pm
k (cos θ)Pm

` (cos θ) sin θdθ

= 2πN2δm,n

∫ 1

−1
Pm
k (s)Pm

` (s)ds

= 2πN2δm,n
2(`+m)!

(2`+ 1)(`−m)!
δk,`

and therefore, to make the spherical harmonics orthonormal, we define

N =

√
2`+ 1

4π

(`−m)!

(`+m)!
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Real spherical harmonics

Equation (5) can also be solved in the reals:

F (φ) = C (m = 0)

F (φ) = C1 cos(mφ) + C2 sin(mφ) (m > 0)

which leads to the definition of the real spherical harmonics:

Ym`(θ, φ) :=


(−1)m

√
2`+1
2π

(`−|m|)!
(`+|m|)!P

|m|
` (cos θ) sin(|m|φ) (m < 0)√

2`+1
4π
P
|m|
` (cos θ) (m = 0)

(−1)m
√

2`+1
2π

(`−|m|)!
(`+|m|)!P

|m|
` (cos θ) cos(|m|φ) (m > 0)

which are orthonormal because of the orthogonality of sine and cosine:∫ 2π

0

sin(mt) sin(nt)dt = π δm,n∫ 2π

0

cos(mt) cos(nt)dt = π δm,n∫ 2π

0

sin(mt) cos(nt)dt = 0

The real spherical harmonics are equivalent to:

Ym`(θ, φ) :=


((−1)m

√
2)=(Y

|m|
` ) (m < 0)

Y
|m|
` (m = 0)

((−1)m
√

2)<(Y
|m|
` ) (m > 0)

Basis for functions on the unit sphere

Both the real and complex spherical harmonics provide a complete frequency-space basis for
functions on the sphere. Jarosz 2008 provides an excellent review of this in Appendix B,
which I summarize briefly here:

Any real valued spherical function f can be written as a linear combination of the real
spherical harmonics:

f =
∑
`

∑
m

c`,mY`,m

with the coefficients determined by projection onto each real spherical harmonic:

c`,m =

∫∫
S2

Y`,mfdS

6



This representation is exact if ` is allowed to go to infinity, but this requires infinitely
many coefficients. A low-frequency approximation can be obtained by limiting ` to a finite
maximum m, using (m+ 1)2 coefficients.

Because of the orthonormality of the spherical harmonics, we can calculate integrated prod-
ucts in this representation as a simple dot product of the coefficients:

∫∫
S2

fgdS =

∫∫
S2

[∑
`

∑
m

c`,mY`,m

][∑
`

∑
m

d`,mY`,m

]
dS

=

∫∫
S2

∑
`

∑
m

c`,md`,mY`,mdS

And because rotations do not alter frequencies, these low-frequency approximations can be
efficiently rotated with simple matrix multiplications. Maintz, Esser, and Dronskowski 2016
and Romanowski, Krukowski, and Jalbout 2008 provide algorithms for these rotations given
only a rotation axis and rotation angle.

Values

The first few positive associated Legendre polynomials

P 0
0 = 1

P 0
1 = x

P 1
1 = −(1− x2)1/2

P 0
2 = (3x2 − 1)/2

P 1
2 = −3x(1− x2)1/2

P 2
2 = 3(1− x2)
P 0
3 = x(5x2 − 3)/2

P 1
3 =

3

2
(1− 5x2)(1− x2)1/2

P 2
3 = 15x(1− x2)
P 3
3 = −15(1− x2)3/2

Values for negative m can be obtained with the relation discussed above.

The first few complex spherical harmonics

Y 0
0 =

1

2

√
1

π
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Y −11 =
1

2

√
3

2π
sin θe−iφ

Y 0
1 =

1

2

√
3

π
cos θ

Y 1
1 = −1

2

√
3

2π
sin θeiφ

Y −22 =
1

4

√
15

2π
sin2 θe−2iφ

Y −12 =
1

2

√
15

2π
sin θ cos θe−iφ

Y 0
2 =

1

4

√
5

π
(3 cos2 θ − 1)

Y 1
2 = −1

2

√
15

2π
sin θ cos θeiφ

Y 2
2 =

1

4

√
15

2π
sin2 θe2iφ

The first few real spherical harmonics

Y0,0 =
1

2

√
1

π

Y1,−1 =
1

2

√
3

π
sin θ sinφ

Y1,0 =
1

2

√
3

π
cos θ

Y1,1 =
1

2

√
3

π
sin θ cosφ

Y2,−2 =
1

4

√
15

π
sin2 θ sin(2φ)

Y2,−1 =
1

2

√
15

π
sin θ cos θ sinφ

Y2,0 =
1

4

√
5

π
(3 cos2 θ − 1)

Y2,1 =
1

2

√
15

π
sin θ cos θ cosφ

Y2,2 =
1

4

√
15

π
sin2 θ cos(2φ)

8



Visualization

Figures 2 and 3 show two common visualizations of the spherical harmonics with ` ≤ 3. I’d
like to emphasize that the first visualization, in which the sphere is stretched and distorted,
is merely meant to make it easier to see the value of the spherical harmonics at particular
angles, and the domain of the spherical harmonics is still the surface of the sphere, as in
Figure 3.

Figure 2: Spherical harmonics drawn by stretching the unit sphere. Regions where Y m
` is positive

are purple, and regions where it is negative are yellow. The distance of the surface from the origin
indicates the absolute value of Y m

` .

Figure 3: Spherical harmonics drawn by shading the unit sphere. Colors represent the value of
Y m
` , blue for positive, green near zero, and yellow for negative.

The MATLAB code I wrote to create these visualizations is included in the appendix.
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Further study

Applications in science

Spherical harmonics have been called the “Swiss army knife of mathematical physics”, and
that appellation appears to be well-deserved. A Google Scholar search for ”’spherical har-
monics’ in physics” returns 144,000 matches, including applications ranging from semicon-
ductor physics (Rupp, Jüngel, and Grasser 2010) and the cosmic microwave background
(White and Srednicki 1994) to light propagation in biological tissue (Klose and Larsen 2006;
Chu et al. 2009; Domı́nguez and Bérubé-Lauzière 2011) and protein shape analysis (Venka-
traman, Sael, and Kihara 2009).

Applications in computer graphics

Low-order spherical harmonics can also efficiently represent directional lightning, shadows,
and reflections in computer graphics, a technique explained well by Green 2003 (who credits
Sloan, Kautz, and Snyder 2002 for introducing the technique).

For example, Weta Digital (the digital effects studio founded by Peter Jackson whose credits
include Avatar and the Lord of the Rings trilogy) uses the first nine spherical harmonics
Y 0
0 , Y

m
1 , Y m

2 as a basis to quickly calculate directional ambient lightning. (Seymour 2013)

Spherical harmonics are well suited to this use because common graphical operations reduce
to matrix operations that can be quickly computed on a GPU. (see Schönefeld 2005)

In pure mathematics

There is much more to study in pure math as well. The scalar spherical harmonics in
3D discussed herein have been extended to include the radius (the solid harmonics), into
higher-dimensional Euclidean space (see Axler, Bourdon, and Wade 2001), and to create
vector (Hill 1954; Blatt and Weisskopf 1979; Barrera, Estevez, and Giraldo 1985) and tensor
(James 1976; Sandberg 1978) forms.

Clearly the study of spherical harmonics could fill a lifetime, but alas, I must stop here.
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Appendix: MATLAB code

The code to make the plots in the Visualizations section:

% Draw a s t r e t c h sphere i f ex tend =1,
% or a shaded sphere i f ex tend=0
extend = 0 ;

% C a l c u l a t e the f i r s t few r e a l s p h e r i c a l harmonics Y lm
for l = 0 :3

for m = − l : l % lowercase L , not one
% Set up a g r i d

phi s = linspace (0 , 2 ∗ pi , 2 00 ) ;
the ta s = linspace (0 , 1 ∗ pi , 2 00 ) ;
[ phi , theta ] = ndgrid ( phis , the ta s ) ;

% F i r s t c a l c u l a t e the a s s o c i a t e d Legendre f u n c t i o n o f
% cos ( t h e t a ) wi th degree l and order abs (m)
P = legendre ( l , cos ( theta ) ) ;
i f ( l > 0)

% I f l == 0 , l e g e n d r e r e t u r n s an order 3 t e n s o r
% c o n t a i n i n g r e s u l t s f o r m=0, m=1, . . .
Plm = reshape (P(abs (m) + 1 , : , : ) , s ize ( phi ) ) ;

else
% I f l == 0 , l e g e n d r e r e t u r n s j u s t
% the matrix f o r m=0
Plm = P;

end

% C a l c u l a t e the norma l i za t ion cons tant N
a = (2∗ l +1)∗ f a c t o r i a l ( l−abs (m) ) ;
b = 4∗pi∗ f a c t o r i a l ( l+abs (m) ) ;
N = sqrt ( a/b ) ;

% F i n a l l y , c a l c u l a t e the r e a l s p h e r i c a l harmonic
i f (m == 0)

H = N .∗ Plm ;
e l s e i f (m < 0)

H = sqrt (2 ) ∗ N ∗ Plm .∗ sin (abs (m)∗ phi ) ;
e l s e i f (m > 0)

H = sqrt (2 ) ∗ N ∗ Plm .∗ cos (m∗phi ) ;
end
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i f ( extend ) % Draw by s t r e t c h i n g the sphere
C = sign (H) ; % Color v a l u e
S = abs (2 ∗ H) ; % s t r e t c h f a c t o r
Xm = cos ( phi ) .∗ sin ( theta ) .∗ S ;
Ym = sin ( phi ) .∗ sin ( theta ) .∗ S ;
Zm = cos ( theta ) .∗ S ;

else % Draw as a shaded sphere
C = H; % Color v a l u e
Xm = cos ( phi ) .∗ sin ( theta ) ;
Ym = sin ( phi ) .∗ sin ( theta ) ;
Zm = cos ( theta ) ;

end

% Trans la te to p o s i t i o n in l a r g e r g r i d
X = Xm;
Y = Ym + m ∗ 2 . 9 ;
Z = Zm + 3 − l ∗ 2 . 9 ;

% Draw i t
colormap d e f a u l t ;
oldcmap = colormap ;
colormap ( fl ipud ( oldcmap ) ) ;
h = surf (X, Y, Z , C) ;
h . AmbientStrength = 0 . 6 ;
h . D i f f u s eS t r eng th = 0 . 6 ;
h . Specu larStrength = 0 . 8 ;
h . SpecularExponent = 25 ;
shading f l a t ;
hold on ;

end
end
axis ([−10 , 10 , −10, 10 , −10, 1 0 ] )
view (90 , 7 ) ;
grid o f f ;
xlabel (”X” ) ;
ylabel (”Y” ) ;
zlabel (”Z ” ) ;
l i g h t ( ’ Po s i t i on ’ , [ 1 0 −10 2 0 ] , ’ S ty l e ’ , ’ l o c a l ’ ) ;
colorbar

% Reverse the X a x i s (MATLAB u s u a l l y draws x going i n t o the page )
gca . XDir = ’ r e v e r s e ’ ;

hold o f f
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