
 MAT 272 Test 3 and Final Exam Review 

13.1 Double Integrals over Rectangular Regions 

1. Compute a Riemann sum approximation of 

 

�𝑓(𝑥,𝑦)𝑑𝐴
 

𝐷

 

 

where 𝐷 = [−1,1]2 (the square of all points (x,y) with −1 ≤ 𝑥 ≤ 1,−1 ≤ 𝑦 ≤

1), based on the following information: 

 𝑓 �− 1
2

,−1
2
� = 1,𝑓 �1

2
, 1
2
� = 2, 𝑓 �1

2
,−1

2
� = 3,𝑓 �− 1

2
, 1
2
� = 4. 

a. 10 

b. 2.5 

c. 40 

d. 20 

e. None of the above. 

13.2 Double Integrals over General Regions 

1. Calculate ∬ 2𝑥𝑦𝑑𝐴 
𝑅  where R is the region between the curves 𝑦 = √𝑥 and 

𝑦 = 1
3
𝑥. 

 

2. Reverse the order of integration on the following double integral. 

�� 𝑓(𝑥, 𝑦)𝑑𝑦 𝑑𝑥
√𝑥

1

4

1

 

a. ∫ ∫ 𝑓(𝑥,𝑦)𝑑𝑥 𝑑𝑦4
1

√𝑦
1  

b. ∫ ∫ 𝑓(𝑥,𝑦)𝑑𝑥 𝑑𝑦𝑦2

0
2
1  

c. ∫ ∫ 𝑓(𝑦, 𝑥)𝑑𝑥 𝑑𝑦2
1

√𝑦
1  

d. ∫ ∫ 𝑓(𝑥,𝑦)𝑑𝑥 𝑑𝑦4
𝑦2

2
1  

e. None of the above. 
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3. Evaluate the integral. Show all your steps.      

� �𝑒𝑥3𝑑𝑥 𝑑𝑦
1

√𝑦

1

0

 

13.3 Double Integrals in Polar Coordinates 

1. Evaluate the iterated integral by converting to polar coordinates: 

�� 𝑒𝑥2+𝑦2𝑑𝑦𝑑𝑥
√4−𝑥2

0

2

−2

 

a. 𝜋
2

(𝑒4 − 1) 

b. 𝜋𝑒4 

c. 𝜋
4
𝑒4 

d. 2𝜋(𝑒4 − 1) 

e. None of the above. 

2. Find the exact volume under 𝑧 = �𝑥2 + 𝑦2  over the region in the xy plane 

given below. 
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3. In an ancient city, the royal palace grounds occupied the center disk of radius 1 

kilometer. Common people lived in a ring-shaped region with inner radius 1 

kilometer and outer radius 3 kilometers that was approximately uniformly filled 

with residences. What was the average distance of a common residence in that 

city from the city center? 

13.4 Triple Integrals 

1. Set up (do not evaluate) a triple integral that represents the volume in the 

first octant below the plane 2𝑥 + 3𝑦 + 𝑧 = 6. Use the integration order 

dxdydz.  

13.5 Triple Integrals in Cylindrical and Spherical Coordinates 

1. Evaluate 

�(𝑥2 + 𝑦2) 𝑑𝑉
 

𝑉

 

where V is the volume bounded between the plane 𝑧 = 0 and the paraboloid 

𝑧 = 16 − 𝑥2 − 𝑦2.      

 

2. Express the volume of the solid inside the sphere 𝜌 = 2 and outside the 

cylinder 𝑥2 + 𝑦2 = 1 using a single triple integral in spherical coordinates. 

Sketch the volume in a 2d coordinate system that shows the xy-plane as the 

first axis and the z axis as the second axis. You do not have to evaluate, but 

you have to show your work in determining limits of integration.  

13.6 Integrals for Mass Calculations 

1. Find the centroid of the region in ℝ2 that is bounded by the curve 𝑦 = √𝑥3 , 

the x-axis and the line 𝑥 = 8. 

 

2. A spherical shell with inner radius 2 meters and outer radius 3 meters is 

filled with gas. The mass density function of the gas (in kilogram per cubic 
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meters) is 𝜚(𝜌) = 1
𝜌

 where 𝜌 is the distance from the center, in meters. Find 

the total mass of the gas in kilograms.  
a.  5𝜋 

b. 10𝜋 

c. 20𝜋 

d. 76𝜋
3

   

e. None of the above. 

 

3. A town is the shape of a rectangle, with vertices (0,0), (8,0), (8,4) and (0,4). 

The population density is modeled by the function (𝑥, 𝑦) = 𝑥𝑦2 . They want 

to place their city hall so that it is centered relative to their population, not 

necessarily geographically. Determine the “population center” of this town. 

(Assume the units are miles, and the density is “hundreds of people per 

square mile”). 

13.7 Change of Variables in Multiple Integrals 

1. Let (𝑢, 𝑣,𝑤) be a new coordinate system for ℝ3 defined by  

𝑥 = 2𝑢 cos 𝑣 , 

𝑦 = 3𝑢 sin𝑣 , 

𝑧 = 5𝑤 

with 𝑢 ≥ 0, 0 ≤ 𝑣 < 2𝜋 and 𝑤 an arbitrary real number. 

Evaluate the Jacobian 𝐽(𝑢, 𝑣,𝑤) = 𝜕(𝑥,𝑦,𝑧)
𝜕(𝑢,𝑣,𝑤)

. 

a. 30𝑢 cos 𝑣 sin 𝑣
𝑣

 

b. 30𝑢 

c. 10𝑢 

d. 10𝑣 

e. None of the above. 

 

2. Evaluate the double integral 
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�(𝑥 + 𝑦)2(𝑦 − 𝑥)4𝑑𝐴
 

𝐷

 

over the region 𝐷 using a change to a new coordinate system. 𝐷 is the square 

with vertices (1,0), (0,1), (-1,0) and (0,-1).  

 

3. Let the polar coordinate system be changed (for this problem only) by the 

introduction of a factor 2 into the x coordinate, 𝑥 = 2𝑟 cos 𝜃,  𝑦 = 𝑟 sin𝜃, so that 

the curves r=constant are no longer circles, but ellipses, and call these coordinates 

(𝑟,𝜃) elliptic polar coordinates.  

a. Compute the Jacobian 𝜕(𝑥,𝑦)
ð(𝑟,𝜃)

.       

b. Use the Jacobian from a. to set up and evaluate a double integral in elliptic 

polar coordinates that represents the area of the ellipse with major radius 2 

and minor radius 1. 

14.1 Vector Fields 

1. Find the gradient field corresponding to 𝜑(𝑥,𝑦, 𝑧) = �𝑦2 − 𝑥2 + 𝑥𝑒𝑧2 − 𝑦3𝑧. 

 

2. Find a potential 𝜑 for the vector field 𝐹(𝑥,𝑦) =< 6𝑥 sin𝑦 , 3 cos 𝑥 >, if it 

exists.  

a. 𝜑(𝑥, 𝑦) =< 3𝑥2 sin𝑦 , 3 cos 𝑥 𝑦 > 

b. 𝜑(𝑥, 𝑦) = 18𝑥 cos 𝑥 sin𝑦 

c. 𝜑(𝑥, 𝑦) = 3𝑥2 sin𝑦 + 𝐶(𝑦) 

d. 𝜑(𝑥, 𝑦) = 6 sin𝑦 

e. No potential exists. 

14.2 Line Integrals 

1. Calculate the line integral ∫ 𝑭 ∙ 𝑑𝒓 
𝐶  where 𝑭 =< 2𝑥,𝑦2 > and 𝐶 is the straight 

line path from (1,-2) to (2,-1). 
 

2. Evaluate the line integral of 𝑭(𝑥,𝑦) =< − 𝑦
𝑥2+𝑦2

, 𝑥
𝑥2+𝑦2

> over the semicircle C 

centered at (0,0) from (1,0) to (−1,0).  
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14.3 Conservative Vector Fields 

1. Which one of the following vector fields is not conservative?  

 

a. 𝐹(𝑥, 𝑦) =< 𝑦𝑒𝑥𝑦, 𝑥𝑒𝑥𝑦 > 

b. 𝐹(𝑥, 𝑦) =< 6𝑥2𝑦, 2𝑥3 − 2𝑦 > 

c. 𝐹(𝑥, 𝑦) =< 1,1> 

d. 𝐹(𝑥, 𝑦) =< 𝑦, 𝑥 > 

e. All of the above are conservative. 

 

2. Evaluate the line integral (work) of the vector field 

𝐹(𝑥,𝑦) =< 3𝑥2𝑦 + 𝑒𝑦, 𝑥3 + 𝑥𝑒𝑦 > 

over the curve C that consists of the line segments from (1,0) to (1,1), from 

(1,1) to (-1,1) and from (-1,1) to (-1,0).  

 

3. What is the meaning of path independence of a vector field F? 
 

a. All line integrals of F (over any path) have the same value. 
 

b. All line integrals of F between two fixed points have the same value. 
 

c. The vector field assumes the same values on any two paths between 
two fixed points. 
 

d. No matter which path you take from point P to point Q, F(Q) is always 
going to be the same value. 
 

e. F(Q)-F(P) has the same value for all points P and Q in the domain of 

the vector field. 

14.4 Green’s Theorem 

1. Evaluate ∮ 𝑭 ∙ 𝑑𝒓 
𝐶  where 𝐶 is the circle with radius 2 and 𝑭(𝑥,𝑦) =< 3𝑥2𝑦 +

2𝑥 − 4𝑦, 𝑥3 + 5𝑥 + 𝑒𝑦2 >. 

a. 36𝜋 

b. 48𝜋 
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c. 4𝜋 

d. 18𝜋 

e. None of the above. 

 

2. Evaluate the line integral ∫ 𝑭 ∙ 𝑑𝒓 
𝐶  where 𝑭 =< 2𝑥 + 4𝑦, 3𝑥 − 𝑦 > and 𝐶 is the 

path from the origin to the point (4,0) to the point (3,10) and back down to the 

origin. 

 

3. Suppose C is the following curve: a straight line from (0,0) to (2,0), a straight 

line from (2,0) to (2,1) and a half-circle with center (1,1) from (2,1) to (0,1).  

Observe that this is not a closed curve.  Evaluate∫ 𝑭 
𝐶 ∙ 𝑑𝒓 with  

𝑭(𝑥, 𝑦) =< −𝑦, 𝑥 >.  

14.5 Divergence and Curl 

1. If 𝑭 is a sufficiently differentiable vector field in ℝ3, which one of the 

following objects is defined and a scalar function? 

a. ∇ × (∇ × 𝑭) 
 

b. ∇ ∙ (∇ × 𝑭) 
 

c. ∇(∇ ∙ 𝑭) 
 

d. ∇ ∙ (∇ ∙ 𝑭) 
 

e. They are all either undefined or vector fields. 

14.6 Surface Integrals 

1. Which one of the following vectors is the outward unit normal of the unit 

sphere at (−1,0,0)? 

a. < 1,0,0 > 

b. < −1,0,0 > 

c. < 0,0,1 > 

d. < 0,0,−1 > 
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2. For the parametric surface 𝒓(𝑢, 𝑣) =< 𝑢 cos(𝑣) ,𝑢 sin(𝑣) , 0 > with 0 ≤ 𝑢 ≤ 1 

and 0 ≤ 𝑣 < 2𝜋, find the (vectorial) surface element 𝑑𝑺. 

 

a. < 0,0,1 > 𝑢 𝑑𝑢 𝑑𝑣 

b. < 0,0,1 > 𝑣 𝑑𝑢 𝑑𝑣 

c. < 0,0,1 >  𝑑𝑢 𝑑𝑣 

d. < 1,1,0 > 𝑑𝑢 𝑑𝑣 

 

 

3. Evaluate the flux integral ∬ 𝑭 ∙ 𝑵𝑑𝑆 
𝑆  for 𝑭 =< 𝑦, 𝑧, 𝑥 > and S is that portion 

of the plane 𝑧 = 2 − 𝑥 − 𝑦 above the square 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1 with 

upward normal. 

14.7 Stokes’ Theorem 

1. Let S be the oriented surface that is the upper half unit sphere (the set of 

points with 𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ≥ 0) with the upward normal. Let 

 𝑭 (𝑥, 𝑦, 𝑧) =< 𝑧, 𝑥,𝑦 > . 

 

a. Evaluate the curl of 𝑭. 

 

b. Evaluate               

�(∇ × 𝑭) ∙ 𝑑𝑺
 

𝑆

 

2. Let a vector field 𝑭 be defined for all points in ℝ3 except the origin by 
 

𝑭(𝑥, 𝑦, 𝑧) =
< 𝑥,𝑦, 𝑧 >
𝑥2 + 𝑦2 + 𝑧2

 

 

Demonstrate explicitly that the curl of 𝐹 is zero. Does this guarantee that 𝑭 is 

conservative? Explain. 
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14.8 Divergence Theorem 
 

1. Evaluate the outward flux of 𝑭(𝑥, 𝑦, 𝑧) =< 𝑥 + 𝑦,𝑦 + 𝑧, 𝑧 + 𝑥 > across the 

surface of the cube [−1,1]3. 

a. 1 

b. 3 

c. 8 

d. 24 

e. None of the above. 

2. Determine the flux of 𝑭(𝑥,𝑦, 𝑧) =< 3𝑥 + 2𝑦, 𝑥 − 𝑦, 2𝑥 + 𝑦 + 𝑧 > through the 

four-sided object in the first octant bounded by the plane 𝑥 + 2𝑦 + 3𝑧 = 6 

and the xy, xz and yz planes. 

3. Let S be the oriented surface that is the upper half unit sphere (the set of 

points with 𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ≥ 0) with the upward normal. Observe that 

this is an open surface – the unit disk in the xy plane is not part of it. Let 

𝑭(𝑥, 𝑦, 𝑧) =< 𝑥 + 2𝑦 + 3𝑧, 5𝑒𝑥, 𝑥2 + 𝑦2 + 𝑧 > be a vector field. 

 

a. Evaluate the divergence of 𝑭.   

b. Evaluate the flux of 𝑭 through S.   

 

Answers 

13.1 Double Integrals over Rectangular Regions 

1. A 

13.2 Double Integrals over General Regions 

1. ∬ 2𝑥𝑦𝑑𝐴 = ∫ ∫ 2𝑥𝑦 𝑑𝑦𝑑𝑥√𝑥
1
3𝑥

9
0

 
𝑅 = ∫ 𝑥 �𝑥 − 1

9
𝑥2� 𝑑𝑥 = �1

3
𝑥3 − 1

36
𝑥4�

0

9
=9

0
243
4

 

2. D 

3. On this integral we must change the order of integration since 𝑒𝑥3 has no 

closed-form antiderivative. The integration region is bounded by the curves 

x=1, y=0 and the parabola 𝑦 = 𝑥2. 
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� �𝑒𝑥3𝑑𝑥 𝑑𝑦 = �� 𝑒𝑥3𝑑𝑦 𝑑𝑥 = �𝑒𝑥3𝑥2𝑑𝑥 =
1
3
𝑒𝑥3�

0

11

0

𝑥2

0

1

0

=
1
3

(𝑒 − 1)
1

√𝑦

1

0

 

13.3 Double Integrals in Polar Coordinates 

1. A 

2. 𝑉 = ∫ ∫ 𝑟2𝑑𝑟𝑑𝜃3
2

𝜋
2
0 = ∫ 𝑑𝜃 ∙ ∫ 𝑟2𝑑𝑟3

2

𝜋
2
0 = 𝜋

2
∙ 1
3
𝑟3�

2

3
= 19𝜋

6
   

3. We use the definition of average of a function of two variables – integral over 

the integration region divided by the area of the region in polar coordinates: 

�̅� =
∫ ∫ 𝑟2𝑑𝑟𝑑𝜃3

1
2𝜋
0
𝜋(32 − 12)

=
2𝜋 ∙ 1

3 (33 − 13)
𝜋(32 − 12)

=
13
6

 

Observe that the average distance is greater than the average of the radii of 

the annulus. Think about why this has to be the case. 

13.4 Triple Integrals 

1. The integral is 

� � � 𝑑𝑥𝑑𝑦𝑑𝑧

(3−32𝑦−
1
2𝑧)

0

(2−13𝑧)

0

6

0

 

13.5 Triple Integrals in Cylindrical and Spherical Coordinates 

1. We evaluate this integral in cylindrical coordinates: 

�(𝑥2 + 𝑦2) 𝑑𝑉 = � � � 𝑟2 𝑑𝑧 𝑟𝑑𝑟 𝑑𝜃
16−𝑟2

0

4

0

2𝜋

0

 

𝑉

 

= � �𝑟2 (16 − 𝑟2)𝑟𝑑𝑟 𝑑𝜃 = 2𝜋
4

0

2𝜋

0

�(16𝑟3 − 𝑟5)𝑑𝑟 
4

0

 

= 2𝜋 (4𝑟4 −
1
6
𝑟6)�

0

4

= 2𝜋(45 −
1
6

46) =
2048𝜋

3
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2. The sketch of the situation could look like this: 
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The gray shaded area represents the volume. Its polar angle (𝜑 value) ranges 

from 𝜋
6

 to 5𝜋
6

. The angle 𝜋
6

 is determined as cos−1 �1
2
� using the right triangle 

OAB.  𝜃 ranges from 0 to 2𝜋 due to the rotational symmetry of the volume 

with respect to the z axis.  

Limits for 𝜌 depend on the 𝜑 value. The red line represents a fixed 𝜑 value. 

The lower limit for 𝜌 is the hypotenuse of a right triangle with angle 𝜑  

opposite to a side of length 1. Therefore, sin𝜑 = 1
𝜌

  or 𝜌 = csc𝜑. The upper 

limit for 𝜌 is 2. Therefore, the desired integral is 

𝑉 = � � � 𝜌2 sin𝜑𝑑𝜌𝑑𝜑𝑑𝜃
2

csc𝜑

5𝜋
6

𝜋
6

2𝜋

0

 

 

13.6 Integrals for Mass Calculations 

1. We first compute the moments: 

𝑀𝑦 = �� 𝑥𝑑𝑦𝑑𝑥
√𝑥3

0

8

0

= �𝑥
4
3𝑑𝑥 =

3
7

8
7
3 =

384
7

8

0

 

𝑀𝑥 = �� 𝑦𝑑𝑦𝑑𝑥
√𝑥3

0

8

0

=
1
2
�𝑥

2
3𝑑𝑥 =

1
2
∙

3
5

8
5
3 =

48
5

8

0

 

 

Next we compute the “mass” (area) of the region: 

𝑀 = �� 𝑑𝑦𝑑𝑥
√𝑥3

0

8

0

= �𝑥
1
3𝑑𝑥 =

3
4

8
4
3 = 12

8

0

 

 

Therefore, the centroid is �𝑀𝑦

𝑀
,𝑀𝑥
𝑀
� = �32

7
, 4
5
�. 

 

2. B 

3. We first compute the moments: 
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𝑀𝑦 = ��𝑥2𝑦2𝑑𝑥𝑑𝑦
8

0

4

0

= �𝑦2𝑑𝑦�𝑥2𝑑𝑥 =
32768

9

8

0

4

0

 

𝑀𝑥 = ��𝑥𝑦3𝑑𝑥𝑑𝑦
8

0

4

0

= �𝑦3𝑑𝑦�𝑥𝑑𝑥 = 2048
8

0

4

0

 

The mass is 

𝑀 = ��𝑥𝑦2𝑑𝑥𝑑𝑦
8

0

4

0

= �𝑦2𝑑𝑦�𝑥𝑑𝑥 =
2048

3

8

0

4

0

 

From that, we get the coordinates of the center of mass: 

 

�̅� =
𝑀𝑦

𝑀
=

16
3

 

𝑦� =
𝑀𝑥

𝑀
= 3 

 

13.7 Change of Variables in Multiple Integrals 

1. B 

2. We introduce new coordinates: 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑦 − 𝑥. In these new 

coordinates, 𝐷 is the square [−1,1]2. To save the labor of having to invert this 

variable transformation, we’ll evaluate the Jacobian of the inverse 

transformation: 

𝐽(𝑥,𝑦) =
𝜕(𝑢, 𝑣)
𝜕(𝑥,𝑦)

= ��

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

�� = � 1 1
−1 1� = 2 

It follows that 

 

𝐽(𝑢, 𝑣) =
𝜕(𝑥, 𝑦)
𝜕(𝑢, 𝑣)

= �
𝜕(𝑢, 𝑣)
𝜕(𝑥,𝑦)�

−1

=
1
2

 

Therefore,  
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�(𝑥 + 𝑦)2(𝑦 − 𝑥)4𝑑𝐴
 

𝐷

=
1
2
� �𝑢2𝑣4𝑑𝑢𝑑𝑣

1

−1

1

−1

 

 

We simplify by exploiting symmetry:  

 

1
2
� �𝑢2𝑣4𝑑𝑢𝑑𝑣

1

−1

1

−1

= 2��𝑢2𝑣4𝑑𝑢𝑑𝑣
1

0

1

0

= 2 ∙
1
3
∙

1
5

=
2

15
 

3. For the given coordinate transformation, the Jacobian is 𝜕(𝑥,𝑦)
ð(𝑟,𝜃)

= 2𝑟𝑑𝑟𝑑𝜃. In the 

new coordinates, the ellipse is the unit circle. Therefore, the area is 

� � 2𝑟𝑑𝑟𝑑
1

0

𝜃
2𝜋

0

= 2𝜋 

14.1 Vector Fields 

1. By taking partial derivatives, we find  

∇𝜑 =
1

2�𝑦2 − 𝑥2 + 𝑥𝑒𝑧2 − 𝑦3𝑧
< −2𝑥 + 𝑒𝑧2 , 2𝑦 − 3𝑦2𝑧, 2𝑥𝑧𝑒𝑧2 − 𝑦3 > 

2. E.  

 

14.2 Line Integrals 

1. A parametrization of the indicated path is 𝒓(𝑡) =< 1,−2 > +𝑡 < 1,1 >, 

0 ≤ 𝑡 ≤ 1. Then 𝑑𝒓 =< 1,1 > 𝑑𝑡. Thus  

 

�𝑭 ∙ 𝑑𝒓
 

𝐶

= �(2(1 + 𝑡) ∙ 1 + (−2 + 𝑡)2 ∙ 1
1

0

)𝑑𝑡 = �(6 − 2𝑡 + 𝑡2
1

0

)𝑑𝑡 

= 6𝑡 − 𝑡2 +
1
3
𝑡3�

0

1

= 6 − 1 +
1
3

= 5
1
3

 

 

2. A parametrization of the semicircle is 𝒓(𝑡) =< cos 𝑡 , sin 𝑡 >, 0 ≤ 𝑡 ≤ 𝜋. Then 

𝑑𝒓 =< − sin 𝑡 , cos 𝑡 > 𝑑𝑡 and 𝑭(𝒓(𝑡)) =< − sin 𝑡 , cos 𝑡 > and therefore 
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�𝑭 ∙ 𝑑𝒓 = � 1𝑑𝑡 = 𝜋
𝝅

𝟎

 

𝐶

 

14.3 Conservative Vector Fields 

1. E  

2. Since 𝜕𝑔
𝜕𝑥

= 𝜕𝑓
𝜕𝑦

= 3𝑥2 + 𝑒𝑦 and the domain of 𝐹 is ℝ2, which is simply 

connected, 𝐹 is conservative. A potential for 𝐹 is 𝜑 = 𝑥3𝑦 + 𝑥𝑒𝑦. By using the 

fundamental theorem for line integrals, we evaluate the line integral as 

 

�𝑭 ∙ 𝑑𝒓 =
 

𝐶

𝜑(−1,0) − 𝜑(1,0) = −1 − 1 = −2 

3. B 
 

14.4 Green’s Theorem 

1. A 

2. The 2d curl of 𝑭 is 𝜕𝑔
𝜕𝑥
− 𝜕𝑓

𝜕𝑦
= 3 − 4 = −1. By Green’s theorem,  

�𝑭 ∙ 𝑑𝒓
 

𝐶

= �−𝑑𝐴 = −area(T)
 

𝑇

= −20 

where T is the triangle with the indicated vertices. The area of that triangle is 
1
2

base ∙ height =20. 

3. Suppose C is the following curve: a straight line from (0,0) to (2,0), a straight 

line from (2,0) to (2,1) and a half-circle with center (1,1) from (2,1) to (0,1).  

Observe that this is not a closed curve.  Find the line integral ∫ 𝑭 
𝐶 ∙ 𝑑𝒓 where 

𝑭(𝑥, 𝑦) =< −𝑦, 𝑥 >.  

 

By adding the line segment L from (0,1) to the origin, we close the path. Let’s 

call this closed path D and the region enclosed by it R. Green’s theorem then 

applies and yields  
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�𝑭 ∙ 𝑑𝒓
 

𝐷

= ��
𝜕𝑔
𝜕𝑥

−
𝜕𝑓
𝜕𝑦�

𝑑𝐴 = � 2𝑑𝐴 = 2 ∙ area(R)
 

𝑅

 

𝑅

 

R consists of a rectangle of area 2 and a half-circle of radius 1. The area of R is 

therefore 2 + 𝜋
2

. It follows that  

�𝑭 ∙ 𝑑𝒓
 

𝐷

= 4 + 𝜋 

The line integral of 𝑭 over D is the line integral of 𝑭 over C, plus the line 

integral of 𝑭 over L: 

�𝑭 ∙ 𝑑𝒓
 

𝐷

= �𝑭 ∙ 𝑑𝒓
 

𝐶

+ �𝑭 ∙ 𝑑𝒓
 

𝐿

 

But 𝑭(𝑥,𝑦) =< −𝑦, 0 > on the line segment L, which is orthogonal to the 

direction of L. Therefore 𝑭 ∙ 𝑑𝒓 = 𝟎 on L and∫ 𝑭 ∙ 𝑑𝒓 
𝐿 = 0. Hence  

�𝑭 ∙ 𝑑𝒓
 

𝐶

= �𝑭 ∙ 𝑑𝒓
 

𝐷

= 4 + 𝜋 

14.5 Divergence and Curl 

1. B 
 
14.6 Surface Integrals 

 
1. B  

2. A 

3. By using x and y as parameters, we obtain a parametrization of the surface S: 

 

𝒓(𝑢, 𝑣) =< 𝑢, 𝑣, 2 − 𝑢 − 𝑣 > 

 

Next we compute the partial derivatives: 

𝒓𝑢 (𝑢, 𝑣) =< 1,0,−1 > 

𝒓𝑣 (𝑢, 𝑣) =< 0,1,−1 > 
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To find a surface normal, we take the cross product: 

 

𝒓𝑢 × 𝒓𝑣 = �
𝒊 𝒋 𝒌
1 0 −1
0 1 −1

� =< 1,1,1 > 

 

This is indeed the upward normal. We recall 𝒏 𝑑𝑆 = (𝒓𝑢 × 𝒓𝑣) 𝑑𝑢 𝑑𝑣 and find  

 

𝒏 𝑑𝑆 =< 1,1,1 > 𝑑𝑢 𝑑𝑣 

 

Furthermore, 𝑭(𝑢, 𝑣) =< 𝑣, 2 − 𝑢 − 𝑣,𝑢 >, thus 

 

𝑭 ∙ 𝒏 𝑑𝑆 = 𝑣 + 2 − 𝑢 − 𝑣 + 𝑢 = 2 

Therefore, ∬ 𝑭 ∙ 𝒏 𝑑𝑆 
𝑆 = ∫ ∫ 2 𝑑𝑢 𝑑𝑣1

0
1
0 = 2. 

 

14.7 Stokes’ Theorem 

1. Let S be the oriented surface that is the upper half unit sphere (the set of 

points with 𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ≥ 0) with the upward normal. Let 

 𝑭 (𝑥, 𝑦, 𝑧) =< 𝑧, 𝑥,𝑦 > . 

a. ∇ × 𝑭 = �
𝒊 𝒋 𝒌
𝜕𝑥 𝜕𝑦 𝜕𝑧
𝑧 𝑥 𝑦

� =< 1,1,1 > 

b. It is a consequence of Stokes’ theorem that the flux of ∇ × 𝑭 through S 

is the same as the flux of ∇ × 𝑭 through the upward oriented unit disk 

D in the xy plane, since they share the same boundary curve. Hence 

�(∇ × 𝑭) ∙ 𝑑𝑺
 

𝑆

= � < 1,1,1 >∙ 𝑑𝑺
 

𝐷

 

D has the normal 𝒏 =< 0,0,1 >, thus < 1,1,1 >∙ 𝑑𝑺 = 𝑑𝑆. It follows 

that 
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�(∇ × 𝑭) ∙ 𝑑𝑺
 

𝑆

= �𝑑𝑆 = area of D = π
 

𝐷

 

2.  

  ∇ × 𝑭 = �

𝒊 𝒋 𝒌
𝜕𝑥 𝜕𝑦 𝜕𝑧
𝑥

𝑥2+𝑦2+𝑧2
𝑦

𝑥2+𝑦2+𝑧2
𝑧

𝑥2+𝑦2+𝑧2

� 

 

We show only that the first component of the curl is zero since the calculation is 

the same for all three components except for renaming of variables.  

𝜕𝑦
𝑧

𝑥2 + 𝑦2 + 𝑧2
− 𝜕𝑧

𝑦
𝑥2 + 𝑦2 + 𝑧2

=
−2𝑦𝑧

(𝑥2 + 𝑦2 + 𝑧2)2 
+

2𝑦𝑧
(𝑥2 + 𝑦2 + 𝑧2)2 

= 0 

 

The domain of 𝑭 is the “punctured” ℝ3, i.e. ℝ3 − {O}. That set is simply 

connected since any closed curve in it can be continuously contracted to a 

point while staying in the set. Since 𝑭 has zero curl on a simply connected set, 

it is conservative. Indeed, 𝜑(𝑥,𝑦, 𝑧) = 1
2

ln(𝑥2 + 𝑦2 + 𝑧2) is a potential. 

14.8 Divergence Theorem 

 

1. D 

2. The divergence of 𝑭 is 3. Therefore, by the divergence theorem, the flux of 𝑭 

through the indicated closed surface is 3 times the enclosed volume. The 

volume is a pyramid with base area 9 and height 2. Therefore, the flux is  

3 ∙
1
3

9 ∙ 2 = 18 

3.  

a. The divergence of 𝑭 is 2. 

 

b. Let D be the closed unit disk in the xy plane. Then 𝐷 ∪ 𝑆 is a closed 

surface. It is a consequence of the divergence theorem that outflow of 
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𝑭 through S equals inflow of 𝑭 through D + integral of div 𝑭 over the 

enclosed volume.  

The influx of 𝑭 through D is easy to compute because  𝑧 = 0   and 

𝒏 =< 0,0,1 > on D. Therefore, 𝑭 ∙ 𝒏 = 𝑥2 + 𝑦2 on D, which means that 

the influx of 𝑭 through D is just the area integral of 𝑟2 over the unit 

disk 𝑟 ≤ 1 in polar coordinates, which is ∫ ∫ 𝑟3𝑑𝑟𝑑𝜃1
0 = 2𝜋 ∙ 1

4
= 𝜋

2
2𝜋
0 . 

The integral of div 𝑭 over the enclosed volume is the integral of 2 over 

the upper half unit sphere, which is 2 times its volume, or 2 ∙ 2
3
𝜋 = 4

3
𝜋. 

It follows that the upwards flux through S is 𝜋
2

+ 4𝜋
3

= 11𝜋
6

. 

 

 

 

 


