- **12.1** Planes and Surfaces
 - Find an equation of the plane containing the points (-6, -4, -4), (4,9, -2) and (7,5,3).
 - a. 4x + 9y 2z = -52
 - b. -3x + 4y 5z = 22
 - c. -3x + 4y 5z = 0
 - d. 73x 44y 79z = 54
 - e. None of the above
 - 2. The equation $x^2 y^2 z^2 = 1$ represents a. A cone
 - b. A hyperboloid of one sheet
 - c. A hyperboloid of two sheets
 - d. An ellipsoid
 - e. None of the above.
- 12.2 Graphs and Level Curves
 - For which of the following functions are the level curves corresponding to the positive integers evenly spaced circles?
 - a. $f(x, y) = x^2 + y^2$ b. $f(x, y) = \sqrt{x^2 + y^2}$
 - c. f(x, y) = x + y
 - d. $f(x, y) = (x^2 + y^2)^2$
 - e. None of the above.
 - 2. Identify the domain of the function $f(x, y) = \sqrt{x^2 + y^2 4} + \sqrt{9 x^2 y^2}$ a. \mathbb{R}^2
 - b. The closed annulus with outer radius 3 and inner radius 2.
 - c. The open annulus with outer radius 3 and inner radius 2.
 - d. The closed disk with radius $\frac{3}{2}$.
 - e. The open disk with radius $\frac{3}{2}$.

MAT 272

3. Which of the following is a level curve plot of $(x, y) = \sqrt{4x^2 + y^2}$?

12.3 Limits and Continuity

1. Does the function $f(x, y) = \frac{x+y}{x-y}$ have a limit as (x, y) goes to (0,0)?

- a. Yes, the limit is 1.
- b. Yes, the limit is -1.
- c. Yes, the limit is 0.
- d. Yes, the limit is a number other than 0, -1, 1.
- e. No, the limit doesn't exist.

2. Demonstrate that the following limit fails to exist:

$$\lim_{(x,y)\to(0,0)}\frac{x^2+y^2}{x^2+2y^2}$$

12.4 Partial Derivatives

1. If *f* is a differentiable function, find the best estimates of $f_x(0,0)$ and $f_y(0,0)$ based on the following data: f(0,0) = 1, f(0.1,0) = 2 and f(0,0.2) = 3.

a.
$$f_x(0,0) \approx 1, f_y(0,0) \approx 2$$

b.
$$f_x(0,0) \approx 2, f_y(0,0) \approx 3$$

- c. $f_x(0,0) \approx 0.2, f_y(0,0) \approx 0.6$
- d. $f_x(0,0) \approx 10, f_y(0,0) \approx 10$
- 2. Suppose *f* is a differentiable function of two variables. What can you conclude based on the information $f_x(1,2) = 3$?
 - a. The function *f* has a value of 3 at (1,2).
 - b. From x=1 to x=2, the value of *f* changes by 3 units.
 - c. A small displacement of the input point (1,2) by Δx in the x direction will result in an approximate change in function output by $3\Delta x$.
 - d. At (1,2), if you go one unit step in the x direction, the function value will increase by <u>exactly</u> 3 units.
 - e. None of the above.

Test 2 Review

MAT 272

3. A plot found on a website shows the water pressure (in bar) at which water has a given density (in kg per cubic meters) at a given temperature (in degrees Celsius). Thus, pressure *P* is a function of density *ρ* and temperature *T*: *P* = *P*(*T*, *ρ*,).

In the following, let R be the point $(10^{\circ} \text{ C}, 1002 \text{ kg/m}^3)$.

- a. Estimate the partial derivative P_{ρ} at R using the 25 and 75 bar lines.
- b. Estimate the partial derivative P_T at R using the 50 and 75 bar lines.

MAT 272

Test 2 Review

12.5 The Chain Rule

- 1. Find g'(t) where $g(t) = f(x(t), y(t)), f(x, y) = 2xy^2 + e^{2y}, x(t) = 2t^2 + 1, y(t) = t.$
- Suppose *h* is a differentiable function of two variables *x*, *y* and *f* is a differentiable function of one variable *t*. Use the following tables to evaluate

(x,y)	h(x,y)	$h_x(x,y)$	$h_y(x,y)$
(1,0)	1	2	3
(1,1)	8	7	2
(2,0)	4	4	1
(2,1)	3	2	3

t	f(t)	f'(t)
1	2	-1
2	1	3
3	0	1
4	0	5

g'(1), where $g(t) = h(f(t), t^2)$.

- 3. For a twice differentiable function $z = f(r, \theta)$ and polar coordinates r, θ , $r = \sqrt{x^2 + y^2}, \theta = \tan^{-1} \frac{y}{x}$
 - a. calculate the partial derivatives $\frac{\partial r}{\partial x}$ and $\frac{\partial \theta}{\partial x}$ and express them in terms of *r* and θ only.
 - b. Express the partial derivative $\frac{\partial z}{\partial x}$ (with common abuse of notation) in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.

12.6 Directional Derivatives and the Gradient

1. Find the direction of maximum change of $f(x, y) = e^{xy} + x^3 - 3y$ at the point (2,0).

a. In the direction of
$$\frac{\langle 6,-1\rangle}{\sqrt{37}}$$

b. In the direction of
$$\frac{\langle 12,-1\rangle}{\sqrt{145}}$$

c. In the direction of
$$\frac{\langle 3,-1\rangle}{\sqrt{10}}$$

- d. In the direction of $\frac{\langle 12, -3 \rangle}{\sqrt{154}}$
- e. None of the above.
- 2. Which one of the following vectors \vec{u} represents the direction of <u>steepest</u> <u>slope</u> of the function $f(x, y) = x^3 + y^4$ at the point (1,1), and what is this steepest slope *m*?
 - a. $\vec{u} = < 3, 4 >, m = 5,$
 - b. $\vec{u} = < 3,4 >, m = 7$
 - c. $\vec{u} = < 1, 1 >, m = 2$
 - d. $\vec{u} = < 1, 1 >, m = 0$
 - e. None of the above.
- 12.7 Tangent Planes and Linear Approximation
 - 1. Find an equation of the tangent plane to the surface z = xy x y at (-5,3,-13).
 - a. 2(x+5) 6(y-3) z = 0
 - b. 2x 6y z = 0
 - c. (x+5) + (y-3) (z+13) = 0
 - d. 2(x+5) 6(y-3) (z+13) = 0
 - e. None of the above.
 - A company makes metal cylinders with a nominal radius of 5cm and a nominal height of 10cm. Use <u>differentials</u> to estimate the deviation of a cylinder's <u>volume</u> from the nominal value if the radius can be off by as much as 0.1cm, and the height can be off by as much as 0.2 cm.
 - a. 0.3 cm³
 - b. 15.301π cm³
 - c. 48.073 cm^3
 - d. $15\pi \text{ cm}^3$
 - e. None of the above.

- 3. Find the best linear approximation of f(4,2) if f is a differentiable function with f(1,1) = 1 and $f_x(1,1) = 5$ and $f_y(1,1) = 2$.
 - a. $f(4,2) \approx 1$
 - b. $f(4,2) \approx 8$
 - c. $f(4,2) \approx 17$
 - d. $f(4,2) \approx 18$
 - e. None of the above.
- 12.8 Maximum/Minimum Problems
 - 1. Given the function $f(x, y) = xy^3 + x^2y + 5x$, find all the critical points of f and apply the second derivative test to identify them as maximum, minimum or saddle points.
 - 2. Find the maximum value of the function f(x, y) = xy y² on the square [0,1]² (i.e. on the set where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1).

12.9 Lagrange Multipliers

- 1. Find the maximum of *xy* subject to the constraint $x^2 + y^2 \le 1$.
 - a. 1
 - b. 2
 - c. ½
 - d. The function f(x, y) = xy does not have a maximum on the unit disk.
 - e. None of the above.
- 2. Find the point on the line x + y = 5 that minimizes $f(x, y) = (x 2)^2 + (y 1)^2$.
- 3. What is the largest that the sum of the cubes of two real numbers can be if the sum of their squares is 1?
 - a. 2 b. 1 c. $\frac{1}{\sqrt{2}}$

d. 0

Answers

12.1 Planes and Surfaces

- 1. 1 D
- 2. C

12.2 Graphs and Level Curves

- 1. B
- 2. B
- 3. D

12.3 Limits and Continuity

- 1. E
- 2. Let

$$f(x,y) = \frac{x^2 + y^2}{x^2 + 2y^2}$$

Then $\lim_{x\to 0} f(x,0) = 1$ but $\lim_{y\to 0} f(0,y) = \frac{1}{2}$. Therefore $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^2+2y^2}$ fails to exist by the two-path test.

12.4 Partial Derivatives

- 1. D
- 2. C
- 3. We use difference quotients to approximate the partial derivatives.

a.
$$P_{\varrho} \approx \frac{P(10,1003) - P(10,1001)}{1003 - 1001} = \frac{75 - 25}{2} = 25$$

b.
$$P_T \approx \frac{P(17.5,1002) - P(10,1002)}{17.5 - 10} = \frac{75 - 50}{7.5} = \frac{10}{3}$$

12.5 The Chain Rule

1. We apply the chain rule

$$g'(t) = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t)$$

to find: $g'(t) = 2(y(t))^2 \cdot 4t + (4x(t)y(t) + 2e^{2y(t)}) = 16t^3 + 4t + 2e^{2t}$

2. We apply the chain rule to $g(t) = h(f(t), t^2)$ and get

$$g'(t) = h_x(f(t), t^2) \cdot f'(t) + h_y(f(t), t^2) \cdot 2t$$

It follows that

$$g'(1) = h_x(f(1), 1) \cdot f'(1) + h_y(f(1), 1) \cdot 2$$

By using the data in the given tables we find

$$g'(1) = h_x(2,1) \cdot (-1) + h_y(2,1) \cdot 2 = 2 \cdot (-1) + 3 \cdot 2 = 4$$

3. For a twice differentiable function $z = f(r, \theta)$ and polar coordinates r, θ , $r = \sqrt{x^2 + y^2}, \theta = \tan^{-1} \frac{y}{x}$

a.

$$\frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{r \cos \theta}{r} = \cos \theta$$
$$\frac{\partial \theta}{\partial x} = \left(\frac{1}{1 + \left(\frac{y}{x}\right)^2}\right) \cdot \left(\frac{-y}{x^2}\right) = \frac{-y}{x^2 + y^2} = \frac{-r \sin \theta}{r^2} = -\frac{\sin \theta}{r}$$

b. By applying the chain rule to the function $z = f(r(x, y), \theta(x, y))$ we find

$$\frac{\partial z}{\partial x} = f_r \frac{\partial r}{\partial x} + f_\theta \frac{\partial \theta}{\partial x} = \frac{\partial z}{\partial r} \cos \theta - \frac{\partial z}{\partial \theta} \frac{\sin \theta}{r}$$

12.6 Directional Derivatives and the Gradient

1. B.

2. A

12.7 Tangent Planes and Linear Approximation

- 1. D
- 2. D
- 3. D

12.6 Maximum/Minimum Problems

1. Critical points (x,y) solve $f_x = y^3 + 2xy + 5 = 0$ and $f_y = 3xy^2 + x^2 = 0$. The second equation is equivalent to $x(3y^2 + x) = 0$ which means that x = 0 or $3y^2 + x = 0$. If x = 0 then the condition $y^3 + 2xy + 5 = 0$ simplifies to $y^3 + 5 = 0$ which means that $y = \sqrt[3]{-5}$. If $3y^2 + x = 0$ then $x = -3y^2$. Substituting this into $y^3 + 2xy + 5 = 0$ yields $y^3 - 6y^3 + 5 = 0$ which is solved by y = 1.

Thus the critical points are $(0, \sqrt[3]{-5})$ and (-3,1). We now apply the second derivative test. With

$$f_{xx} = 2y, f_{xy} = 3y^2 + 2x, f_{yy} = 6xy$$

we compute the discriminant to be

$$D = 2y \cdot 6xy - (3y^2 + 2x)^2 = 12xy^2 - (3y^2 + 2x)^2$$

By plugging in the two critical points, we recognize that *D* is negative at both of them. Therefore, both critical points are <u>saddle points</u>.

2. We need to collect three types of candidate points for the location of the absolute max: critical points of the surface, critical points of its boundary curves and corner points.

- a. The system $f_x = y = 0$, $f_y = x 2y = 0$ has only one solution: (0,0). This is the sole critical point of the surface, and it is in the domain.
- b. Collecting the critical points of the boundary curves.
 - i. The boundary curve $z = f(0, y) = -y^2$ has derivative
 - $\frac{dz}{dy} = -2y$ and therefore a critical point at y = 0.
 - ii. The boundary curve $z = f(1, y) = y y^2$ has derivative $\frac{dz}{dy} = 1 2y$ and therefore a critical point at $y = \frac{1}{2}$.
 - iii. The boundary curve z = f(x, 0) = 0 is constant. Every one of its points is critical.
 - iv. The boundary curve z = f(x, 1) = x is linear and non-constant and therefore contains no critical points.
- c. The corner points are (0,0), (0,1), (1,0) and (1,1).

We now make a table of function values for the points discovered.

(x,y)	f(x,y)
(x,0)	0
(0,1)	-1
(1,1)	0
(1,0.5)	.25

Answer: the maximum value is $\frac{1}{4}$, achieved at the point $(1, \frac{1}{2})$.

12.9 Lagrange Multipliers

- 1. C
- 2. Find the point on the line x + y = 5 that minimizes $f(x, y) = (x 2)^2 + (y 1)^2$.

11

Test 2 Review

We have to solve the system of equations $f_x = \lambda g_x$ and $f_y = \lambda g_y$ where g(x, y) = x + y. By substituting the partial derivatives, we get $2(x - 2) = \lambda$ and $2(y - 1) = \lambda$. The Lagrange multiplier is very conveniently eliminated here: 2(x - 2) = 2(y - 1) or x - 1 = y. We substitute y = 5 - x into that equation to eliminate y: x - 1 = 5 - x. This leads to the solution $(x, y, \lambda) = (3, 2, 2)$. Since the question guarantees the existence of a minimum of f on the line x + y = 5, it must be at (3,2).

3. B