### 12.1 Planes and Surfaces

1. Find an equation of the plane containing the points $(-6,-4,-4),(4,9,-2)$ and $(7,5,3)$.
a. $4 x+9 y-2 z=-52$
b. $-3 x+4 y-5 z=22$
c. $-3 x+4 y-5 z=0$
d. $73 x-44 y-79 z=54$
e. None of the above
2. The equation $x^{2}-y^{2}-z^{2}=1$ represents
a. A cone
b. A hyperboloid of one sheet
c. A hyperboloid of two sheets
d. An ellipsoid
e. None of the above.

### 12.2 Graphs and Level Curves

1. For which of the following functions are the level curves corresponding to the positive integers evenly spaced circles?
a. $f(x, y)=x^{2}+y^{2}$
b. $f(x, y)=\sqrt{x^{2}+y^{2}}$
c. $f(x, y)=x+y$
d. $f(x, y)=\left(x^{2}+y^{2}\right)^{2}$
e. None of the above.
2. Identify the domain of the function $f(x, y)=\sqrt{x^{2}+y^{2}-4}+\sqrt{9-x^{2}-y^{2}}$
a. $\mathbb{R}^{2}$
b. The closed annulus with outer radius 3 and inner radius 2 .
c. The open annulus with outer radius 3 and inner radius 2 .
d. The closed disk with radius $\frac{3}{2}$.
e. The open disk with radius $\frac{3}{2}$.
3. Which of the following is a level curve plot of $(x, y)=\sqrt{4 x^{2}+y^{2}}$ ?
A.

B.

C.

D.


### 12.3 Limits and Continuity

1. Does the function $f(x, y)=\frac{x+y}{x-y}$ have a limit as $(x, y)$ goes to $(0,0)$ ?
a. Yes, the limit is 1.
b. Yes, the limit is -1 .
c. Yes, the limit is 0 .
d. Yes, the limit is a number other than $0,-1,1$.
e. No, the limit doesn't exist.
2. Demonstrate that the following limit fails to exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}
$$

### 12.4 Partial Derivatives

1. If $f$ is a differentiable function, find the best estimates of $f_{x}(0,0)$ and $f_{y}(0,0)$ based on the following data: $f(0,0)=1, f(0.1,0)=2$ and $f(0,0.2)=3$.
a. $f_{x}(0,0) \approx 1, f_{y}(0,0) \approx 2$
b. $\quad f_{x}(0,0) \approx 2, f_{y}(0,0) \approx 3$
c. $f_{x}(0,0) \approx 0.2, f_{y}(0,0) \approx 0.6$
d. $f_{x}(0,0) \approx 10, f_{y}(0,0) \approx 10$
2. Suppose $f$ is a differentiable function of two variables. What can you conclude based on the information $f_{x}(1,2)=3$ ?
a. The function $f$ has a value of 3 at $(1,2)$.
b. From $\mathrm{x}=1$ to $\mathrm{x}=2$, the value of $f$ changes by 3 units.
c. A small displacement of the input point $(1,2)$ by $\Delta x$ in the $x$ direction will result in an approximate change in function output by $3 \Delta x$.
d. At $(1,2)$, if you go one unit step in the $x$ direction, the function value will increase by exactly 3 units.
e. None of the above.
3. A plot found on a website shows the water pressure (in bar) at which water has a given density (in kg per cubic meters) at a given temperature (in degrees Celsius). Thus, pressure $P$ is a function of density $\varrho$ and temperature $T: P=P(T, \varrho$,$) .$


In the following, let R be the point $\left(10^{\circ} \mathrm{C}, 1002 \mathrm{~kg} / \mathrm{m}^{3}\right)$.
a. Estimate the partial derivative $P_{\varrho}$ at $R$ using the 25 and 75 bar lines.
b. Estimate the partial derivative $P_{T}$ at $R$ using the 50 and 75 bar lines.
12.5 The Chain Rule

1. Find $g^{\prime}(t)$ where $g(t)=f(x(t), y(t)), f(x, y)=2 x y^{2}+e^{2 y}, x(t)=2 t^{2}+1$, $y(t)=t$.
2. Suppose $h$ is a differentiable function of two variables $x, y$ and $f$ is a differentiable function of one variable $t$. Use the following tables to evaluate

| $(\mathrm{x}, \mathrm{y})$ | $h(x, y)$ | $h_{x}(x, y)$ | $h_{y}(x, y)$ |
| :--- | :--- | :--- | :--- |
| $(1,0)$ | 1 | 2 | 3 |
| $(1,1)$ | 8 | 7 | 2 |
| $(2,0)$ | 4 | 4 | 1 |
| $(2,1)$ | 3 | 2 | 3 |


| $t$ | $f(t)$ | $f^{\prime}(t)$ |
| :--- | :--- | :--- |
| 1 | 2 | -1 |
| 2 | 1 | 3 |
| 3 | 0 | 1 |
| 4 | 0 | 5 |

$g^{\prime}(1)$, where $g(t)=h\left(f(t), t^{2}\right)$.
3. For a twice differentiable function $z=f(r, \theta)$ and polar coordinates $r, \theta$, $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1} \frac{y}{x^{\prime}}$,
a. calculate the partial derivatives $\frac{\partial r}{\partial x}$ and $\frac{\partial \theta}{\partial x}$ and express them in terms of $r$ and $\theta$ only.
b. Express the partial derivative $\frac{\partial z}{\partial x}$ (with common abuse of notation) in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.

### 12.6 Directional Derivatives and the Gradient

1. Find the direction of maximum change of $f(x, y)=e^{x y}+x^{3}-3 y$ at the point $(2,0)$.
a. In the direction of $\frac{\langle 6,-1\rangle}{\sqrt{37}}$
b. In the direction of $\frac{<12,-1>}{\sqrt{145}}$
c. In the direction of $\frac{\langle 3,-1\rangle}{\sqrt{10}}$
d. In the direction of $\frac{<12,-3>}{\sqrt{154}}$
e. None of the above.
2. Which one of the following vectors $\vec{u}$ represents the direction of steepest slope of the function $f(x, y)=x^{3}+y^{4}$ at the point $(1,1)$, and what is this steepest slope $m$ ?
a. $\vec{u}=<3,4>, m=5$,
b. $\vec{u}=<3,4>, m=7$
c. $\vec{u}=\langle 1,1\rangle, m=2$
d. $\vec{u}=<1,1>, m=0$
e. None of the above.

### 12.7 Tangent Planes and Linear Approximation

1. Find an equation of the tangent plane to the surface $z=x y-x-y$ at $(-5,3,-$ 13).
a. $2(x+5)-6(y-3)-z=0$
b. $2 x-6 y-z=0$
c. $(x+5)+(y-3)-(z+13)=0$
d. $2(x+5)-6(y-3)-(z+13)=0$
e. None of the above.
2. A company makes metal cylinders with a nominal radius of 5 cm and a nominal height of 10 cm . Use differentials to estimate the deviation of a cylinder's volume from the nominal value if the radius can be off by as much as 0.1 cm , and the height can be off by as much as 0.2 cm .
a. $0.3 \mathrm{~cm}^{3}$
b. $15.301 \pi \mathrm{~cm}^{3}$
c. $48.073 \mathrm{~cm}^{3}$
d. $15 \pi \mathrm{~cm}^{3}$
e. None of the above.
3. Find the best linear approximation of $f(4,2)$ if $f$ is a differentiable function with $f(1,1)=1$ and $f_{x}(1,1)=5$ and $f_{y}(1,1)=2$.
a. $f(4,2) \approx 1$
b. $f(4,2) \approx 8$
c. $f(4,2) \approx 17$
d. $f(4,2) \approx 18$
e. None of the above.
12.8 Maximum/Minimum Problems
4. Given the function $f(x, y)=x y^{3}+x^{2} y+5 x$, find all the critical points of $f$ and apply the second derivative test to identify them as maximum, minimum or saddle points.
5. Find the maximum value of the function $f(x, y)=x y-y^{2}$ on the square $[0,1]^{2}$ (i.e. on the set where $0 \leq x \leq 1$ and $0 \leq y \leq 1$ ).

### 12.9 Lagrange Multipliers

1. Find the maximum of $x y$ subject to the constraint $x^{2}+y^{2} \leq 1$.
a. 1
b. 2
c. $1 / 2$
d. The function $f(x, y)=x y$ does not have a maximum on the unit disk.
e. None of the above.
2. Find the point on the line $x+y=5$ that minimizes $f(x, y)=(x-2)^{2}+$ $(y-1)^{2}$.
3. What is the largest that the sum of the cubes of two real numbers can be if the sum of their squares is 1 ?
a. 2
b. 1
c. $\frac{1}{\sqrt{2}}$
d. 0

## Answers

### 12.1 Planes and Surfaces

1. 1 D
2. C

### 12.2 Graphs and Level Curves

1. B
2. B
3. D

### 12.3 Limits and Continuity

1. E
2. Let

$$
f(x, y)=\frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}
$$

Then $\lim _{x \rightarrow 0} f(x, 0)=1$ but $\lim _{y \rightarrow 0} f(0, y)=\frac{1}{2}$. Therefore $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}$ fails to exist by the two-path test.

### 12.4 Partial Derivatives

1. D
2. C
3. We use difference quotients to approximate the partial derivatives.
a. $\quad P_{\varrho} \approx \frac{P(10,1003)-P(10,1001)}{1003-1001}=\frac{75-25}{2}=25$
b. $\quad P_{T} \approx \frac{P(17.5,1002)-P(10,1002)}{17.5-10}=\frac{75-50}{7.5}=\frac{10}{3}$

### 12.5 The Chain Rule

1. We apply the chain rule
$g^{\prime}(t)=f_{x}(x(t), y(t)) \cdot x^{\prime}(t)+f_{y}(x(t), y(t)) \cdot y^{\prime}(t)$
to find: $g^{\prime}(t)=2(y(t))^{2} \cdot 4 t+\left(4 x(t) y(t)+2 e^{2 y(t)}\right)=16 t^{3}+4 t+2 e^{2 t}$
2. We apply the chain rule to $g(t)=h\left(f(t), t^{2}\right)$ and get

$$
g^{\prime}(t)=h_{x}\left(f(t), t^{2}\right) \cdot f^{\prime}(t)+h_{y}\left(f(t), t^{2}\right) \cdot 2 t
$$

It follows that

$$
g^{\prime}(1)=h_{x}(f(1), 1) \cdot f^{\prime}(1)+h_{y}(f(1), 1) \cdot 2
$$

By using the data in the given tables we find

$$
g^{\prime}(1)=h_{x}(2,1) \cdot(-1)+h_{y}(2,1) \cdot 2=2 \cdot(-1)+3 \cdot 2=4
$$

3. For a twice differentiable function $z=f(r, \theta)$ and polar coordinates $r, \theta$,

$$
r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1} \frac{y}{x}
$$

a.

$$
\begin{aligned}
& \frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{r \cos \theta}{r}=\cos \theta \\
& \frac{\partial \theta}{\partial x}=\left(\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\right) \cdot\left(\frac{-y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}}=\frac{-r \sin \theta}{r^{2}}=-\frac{\sin \theta}{r}
\end{aligned}
$$

b. By applying the chain rule to the function $z=f(r(x, y), \theta(x, y))$ we find

$$
\frac{\partial z}{\partial x}=f_{r} \frac{\partial r}{\partial x}+f_{\theta} \frac{\partial \theta}{\partial x}=\frac{\partial z}{\partial r} \cos \theta-\frac{\partial z}{\partial \theta} \frac{\sin \theta}{r}
$$

12.6 Directional Derivatives and the Gradient

1. B.
2. A
12.7 Tangent Planes and Linear Approximation
3. D
4. D
5. D

### 12.6 Maximum/Minimum Problems

1. Critical points ( $\mathrm{x}, \mathrm{y}$ ) solve $f_{x}=y^{3}+2 x y+5=0$ and $f_{y}=3 x y^{2}+x^{2}=0$. The second equation is equivalent to $x\left(3 y^{2}+x\right)=0$ which means that $x=0$ or $3 y^{2}+x=0$.

If $x=0$ then the condition $y^{3}+2 x y+5=0$ simplifies to $y^{3}+5=0$ which means that $y=\sqrt[3]{-5}$.
If $3 y^{2}+x=0$ then $x=-3 y^{2}$. Substituting this into $y^{3}+2 x y+5=0$ yields $y^{3}-6 y^{3}+5=0$ which is solved by $y=1$.

Thus the critical points are $(0, \sqrt[3]{-5})$ and $(-3,1)$. We now apply the second derivative test. With

$$
f_{x x}=2 y, f_{x y}=3 y^{2}+2 x, f_{y y}=6 x y
$$

we compute the discriminant to be

$$
D=2 y \cdot 6 x y-\left(3 y^{2}+2 x\right)^{2}=12 x y^{2}-\left(3 y^{2}+2 x\right)^{2}
$$

By plugging in the two critical points, we recognize that $D$ is negative at both of them. Therefore, both critical points are saddle points.
2. We need to collect three types of candidate points for the location of the absolute max: critical points of the surface, critical points of its boundary curves and corner points.
a. The system $f_{x}=y=0, f_{y}=x-2 y=0$ has only one solution: $(0,0)$. This is the sole critical point of the surface, and it is in the domain.
b. Collecting the critical points of the boundary curves.
i. The boundary curve $z=f(0, y)=-y^{2}$ has derivative $\frac{d z}{d y}=-2 y$ and therefore a critical point at $y=0$.
ii. The boundary curve $z=f(1, y)=y-y^{2}$ has derivative $\frac{d z}{d y}=1-2 y$ and therefore a critical point at $y=\frac{1}{2}$.
iii. The boundary curve $z=f(x, 0)=0$ is constant. Every one of its points is critical.
iv. The boundary curve $z=f(x, 1)=x$ is linear and non-constant and therefore contains no critical points.
c. The corner points are $(0,0),(0,1),(1,0)$ and $(1,1)$.

We now make a table of function values for the points discovered.

| $(x, y)$ | $f(x, y)$ |
| :--- | :--- |
| $(x, 0)$ | 0 |
| $(0,1)$ | -1 |
| $(1,1)$ | 0 |
| $(1,0.5)$ | .25 |

Answer: the maximum value is $\frac{1}{4}$, achieved at the point $\left(1, \frac{1}{2}\right)$.
12.9 Lagrange Multipliers

1. C
2. Find the point on the line $x+y=5$ that minimizes $f(x, y)=(x-2)^{2}+$ $(y-1)^{2}$.

We have to solve the system of equations $f_{x}=\lambda g_{x}$ and $f_{y}=\lambda g_{y}$ where $g(x, y)=x+y$. By substituting the partial derivatives, we get $2(x-2)=\lambda$ and $2(y-1)=\lambda$. The Lagrange multiplier is very conveniently eliminated here: $2(x-2)=2(y-1)$ or $x-1=y$. We substitute $y=5-x$ into that equation to eliminate $y$ : $x-1=5-x$. This leads to the solution $(x, y, \lambda)=(3,2,2)$. Since the question guarantees the existence of a minimum of f on the line $x+y=5$, it must be at $(3,2)$.
3. B

