Areas

- 1. Find the area of the region bounded by the curves: $y = x^2 2x$, y = x + 4
- 2. Find the area of the region bounded by the curves: $y = \cos x$, $y = \sin 2x$, x = 0, $x = \pi/2$
- 3. Find the values of c such that the area of the region bounded by the parabolas $y = x^2 c^2$ and $y = c^2 x^2$ is 576.
- 4. Find the area of the region bounded by the curves: $x = 2y^2$, $x = 4 + y^2$
- 5. Use calculus to find the area of the triangle with the given vertices (0,0), (2,1), (-1,6)
- 6. Find the area of the region bounded by the parabola $y = x^2$, the tangent line to this parabola at (6, 36), and the x axis.
- 7. Find the number b such that the line y = b divides the region bounded by the curves $y = x^2$ and y = 4 into two regions with equal area.
- 8. Find the number b such that the line y=b divides the region bounded by the curves $y=5x^2$ and y=7 into two regions with equal area.
- 9. Find (approximately) the area of the region bounded by the curves: $y = 6 + x^2$, $y = 6 + e^{-x^2}$
- 10. Find the positive value of c such that the area of the region bounded by the parabolas $y = x^2 c^2$ and $y = c^2 x^2$ is 576.