Test 3 Solutions

Multiple Choice

1) Evaluate $\iiint_{E} z e^{2 x+y}$ where E is the box $0 \leq x \leq 2,0 \leq y \leq 3,0 \leq z \leq 5$.

The iterated integral is written as

$$
\int_{0}^{2} \int_{0}^{3} \int_{0}^{5} z e^{2 x+y} d z d y d x
$$

Since $z e^{2 x+y}=z e^{2 x} e^{y}$, the integrand is separable and we can do each of the single integrals separately:

$$
\int_{0}^{2} \int_{0}^{3} \int_{0}^{5} z e^{2 x+y} d z d y d x=\int_{0}^{2} e^{2 x} d x \int_{0}^{3} e^{y} d y \int_{0}^{5} z d z
$$

The x integral is

$$
\int_{0}^{2} e^{2 x} d x=\left.\frac{1}{2} e^{2 x}\right|_{x=0} ^{x=2}=\frac{1}{2}\left(e^{4}-1\right)
$$

The y integral is

$$
\int_{0}^{3} e^{y} d x=\left.e^{y}\right|_{y=0} ^{y=3}=\left(e^{3}-1\right)
$$

The z integral is

$$
\int_{0}^{5} z d z=\left.\frac{1}{2} z^{2}\right|_{z=0} ^{z=5}=\frac{25}{2}
$$

The triple integral is the product of these three numbers:

$$
\int_{0}^{2} \int_{0}^{3} \int_{0}^{5} z e^{2 x+y} d z d y d x=\frac{25}{4}\left(e^{4}-1\right)\left(e^{3}-1\right) \approx 6393.43
$$

2) Let E be the solid region bounded by sphere of radius 4 in the first octant. Find the appropriate integral for $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$ in spherical coordinates.

The first octant corresponds to $0 \leq \phi \leq \pi / 2$ and $0 \leq \theta \leq \pi / 2$. The integrand is just

$$
\sqrt{x^{2}+y^{2}+z^{2}}=\rho
$$

and the differential volume $d V$ in spherical coordinates is

$$
d V=\rho^{2} \sin (\phi)
$$

The triple integral in spherical coordinates is thus

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{4} \rho \rho^{2} \sin (\phi) d \rho d \phi d \theta=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{4} \rho^{3} \sin (\phi) d \rho d \phi d \theta
$$

3) What are the cylindrical coordinates of the point whose rectangular coordinates are $(x, y, z)=$ $(4,3,0)$?

Cylindrical coordinates have the form (r, θ, z) where $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}(y / x)$ and $z=z$. Therefore

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5, \\
\theta=\tan ^{-1}(3 / 4)
\end{gathered}
$$

$$
z=0
$$

so

$$
(r, \theta, z)=\left(5, \tan ^{-1}(3 / 4), 0\right)
$$

4) Find the gradient vector field for $f(x, y)=y^{2}+e^{2 x}$.

By definition, the gradient field is $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$. The partial derivatives of f are

$$
f_{x}=2 e^{2 x}, \quad f_{y}=2 y
$$

Therefore the gradient field is

$$
\nabla f=\left\langle 2 e^{2 x}, 2 y\right\rangle=2 e^{2 x} \mathbf{i}+2 y \mathbf{j}
$$

5) Suppose $\mathbf{F}(x, y, z)$ is a gradient field with $\mathbf{F}=\nabla f, S$ is a level surface of f and C is a curve on S. What is the value of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$?

Since $\mathbf{F}=\nabla f$, then by the fundamental theorem of line integrals,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{q})-f(\mathbf{p})
$$

where \mathbf{p} and \mathbf{q} are the endpoints of the curve C. Since S is a level surface on f, then for any point \mathbf{r} on S, we know that $F(\mathbf{r})=K$ for some value K. Since the curve C is on S, \mathbf{p} and \mathbf{q} are both on S so $f(\mathbf{p})=f(\mathbf{q})=K$. Therefore,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{q})-f(\mathbf{p})=K-K=0
$$

7) Evaluate $\int_{C} y d x$ where C is the circle $x^{2}+y^{2}=25$ with positive orientation.

We first parameterize C as

$$
C: x(t)=5 \cos (t), y(t)=5 \sin (t), 0 \leq t \leq 2 \pi
$$

Then

$$
d x=\frac{d x}{d t} d t=-5 \sin (t) d t
$$

and the line integral then becomes

$$
\int_{C} y d x=\int_{0}^{2 \pi} y(t) \frac{d x}{d t} d t=\int_{0}^{2 \pi}(5 \sin (t))(-5 \sin (t)) d t=-25 \int_{0}^{2 \pi} \sin ^{2}(t) d t
$$

Using the trig identity $\sin ^{2}(t)=\frac{1}{2}(1-\cos (2 t))$, we get

$$
-25 \int_{0}^{2 \pi} \frac{1}{2}(1-\cos (2 t)) d t=-\left.\frac{25}{2}\left(t-\frac{1}{2} \sin (2 t)\right)\right|_{t=0} ^{t=2 \pi}=-\frac{25}{2}(2 \pi)=-25 \pi
$$

Note that we could have also done this with Green's Theorem, using $P=y$ and $Q=0$. This would give us

$$
\int_{C} y d x=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\int_{C}-1 d A=-A(D)=-\pi(5)^{2}=-25 \pi
$$

where $A(D)=\pi(5)^{2}$ is the area of the circle enclosed by C.

1) Let the curve C be the line segment from $(2,-1,3)$ to $(5,1,5)$ and let $\mathbf{F}(x, y, z)=\langle-y, z, x\rangle$ be a force field. Calculate the work done by \mathbf{F} to move a particle along the curve C.

The work W is given by the line integral

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

where $\mathbf{r}(t), a \leq t \leq b$ is the parameterization of C. We parameterize the line segment from $(2,-1,3)$ to $(5,1,5)$ as

$$
\mathbf{r}(t)=(1-t)\langle 2,-1,3\rangle+t\langle 5,1,5\rangle, \quad 0 \leq t \leq 1
$$

Simplifying this, we get

$$
\mathbf{r}(t)=\langle 2-2 t+5 t, t-1+t, 3-3 t+5 t\rangle=\langle 3 t+2,2 t-1,2 t+3\rangle
$$

The tangent vector of this curve is

$$
\mathbf{r}^{\prime}(t)=\langle 3,2,2\rangle
$$

Evaluating F along the curves, we get

$$
\mathbf{F}(\mathbf{r}(t))=\langle-y(t), z(t), x(t)\rangle=\langle 1-2 t, 2 t+3,3 t+2\rangle
$$

Therefore

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=\langle 1-2 t, 2 t+3,3 t+2\rangle \cdot\langle 3,2,2\rangle=3(1-2 t)+2(2 t+3)+2(3 t+2)=4 t+13
$$

The work is therefore

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1} 4 t+13 d t=2 t^{2}+\left.13 t\right|_{t=0} ^{t=1}=2+13=15
$$

2) Use Green's Theorem to evaluate $\int_{C}\left(e^{x^{2}}-y\right) d x+\left(2 x+\sin ^{2} y\right) d y$ where C is the positively oriented circle $x^{2}+y^{2}=36$.

The general formula for Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A
$$

where D is the region enclosed by C. For this problem,

$$
\frac{\partial Q}{\partial x}=2, \quad \frac{\partial P}{\partial y}=-1
$$

so we get the double integral

$$
\iint_{D} 2-(-1) d A=\iint_{D} 3 d A=3 A(D)
$$

where $A(D)=\pi(6)^{2}$ is the area of a disc of radius 6 . The answer is thus

$$
\iint_{D} d A=3 A(D)=3 \pi(6)^{2}=108 \pi
$$

3) Let $\mathbf{F}(x, y, z)=\left(2 x y z^{3}\right) \mathbf{i}+\left(x^{2} z^{3}+\cos y\right) \mathbf{j}+\left(3 x^{2} y z^{2}\right) \mathbf{k}$.
a) Find a potential function for \mathbf{F}.

The potential function $f(x, y, z)$ must satisfy $\nabla f=\mathbf{F}$, which gives is the three equations

$$
f_{x}=2 x y z^{3}, \quad f_{y}=x^{2} z^{3}+\cos y, \quad f_{z}=3 x^{2} y z^{2} .
$$

Integrating the first equation with respect to x gives us

$$
f(x, y, z)=x^{2} y z^{3}+g(y, z)
$$

Differentiating this with respect to y and using the second equation, we get

$$
f_{y}=x^{2} z^{3}+g_{y}=x^{2} z^{3}+\cos y \Rightarrow g_{y}=\cos y \Rightarrow g(y, z)=\sin (y)+h(z) .
$$

The potential function is therefore

$$
f(x, y, z)=x^{2} y z^{3}+\sin y+h(z) .
$$

Differentiating this with respect to z and using the third equation, we get

$$
f_{z}=3 x^{2} y z^{2}+h^{\prime}(z)=3 x^{2} y z^{2} \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=K
$$

where K is any constant. Therefore any function of the form

$$
f(x, y, z)=x^{2} y z^{3}+\sin y+K
$$

is a potential function for \mathbf{F}.
b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is any curve from $(2,0,5)$ to $(3,2,3)$.

By the fundamental theorem of line integrals,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{(2,0,5)}^{(3,2,3)} \nabla f \cdot d \mathbf{r} \\
& =f(3,2,3)-f(2,0,5) \\
& =\left[\left(3^{2}\right)(2)\left(3^{3}\right)+\sin 2+K\right]-[0+0+K] \\
& =486+\sin 2 \\
& \approx 486.9093 .
\end{aligned}
$$

