Test 2 Solutions

1) Use the chain rule to find $\frac{\partial z}{\partial s}$ if $z=e^{x y}, x=7 s+8 t, y=s t^{4}$.

Applying the chain rule, we have

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}=\left(y e^{x y}\right)(7)+\left(x e^{x y}\right)\left(t^{4}\right)=7 y e^{x y}+x e^{x y} t^{4}
$$

2) Find the maximum rate of change for $f(x, y)=x^{3} y^{2}$ at the point $(3,2)$.

The maximum rate of change at any point is the magnitude of the gradient vector at that point. The gradient vector for this function is

$$
\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 3 x^{2} y^{2}, 2 x^{3} y\right\rangle
$$

Evaluating this at the point $(3,2)$ gives us

$$
\nabla f(3,2)=\left\langle 3(3)^{2}(2)^{2}, 2(3)^{3}(2)\right\rangle=\langle 108,108\rangle=108\langle 1,1\rangle
$$

The maximum rate of change at $(3,2)$ is the magnitude of this vector:

$$
|\nabla f(3,2)|=108 \sqrt{1^{2}+1^{2}}=108 \sqrt{2}
$$

3) Reverse the order of integration for the double integral $\int_{0}^{1} \int_{y}^{1} f(x, y) d x d y$.

The region of integration is the triangle bounded by $y=0, y=1, x=y$ and $x=1$. This region can also be stated as

$$
D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x\}
$$

Therefore the reversed double integral is

$$
\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x
$$

4) By changing to polar coordinates, evaluate the integral $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A$ where D is the disc $x^{2}+y^{2} \leq 4$.

The disc D in polar coordinates is the polar rectangle $D=[0,2] \times[0,2 \pi]$. The integrand in polar coordinates is

$$
\left(x^{2}+y^{2}\right)^{3 / 2}=\left(r^{2}\right)^{3 / 2}=r^{3}
$$

Therefore the double integral in polar coordinates is

$$
\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A=\int_{0}^{2 \pi} \int_{0}^{2} r^{3} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2} r^{4} d r d \theta
$$

This integral is separable so we can do each single integral separately

$$
\int_{0}^{2 \pi} \int_{0}^{2} r^{4} d r d \theta=\left[\int_{0}^{2 \pi} d \theta\right]\left[\int_{0}^{2} r^{4} d r\right]=\left.(2 \pi) \cdot \frac{1}{5} r^{5}\right|_{r=0} ^{r=2}=(2 \pi) \cdot \frac{32}{5}=\frac{64 \pi}{5}
$$

5) Find the differential of the function $z=3 y \sqrt{x}$.

The differential for a function of two variables $z=f(x, y)$ is

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=\frac{3 y}{2 \sqrt{x}} d x+3 \sqrt{x} d y
$$

6) Find the domain of the function $f(x, y)=\sqrt{x}+\sqrt{y}$.

Since \sqrt{x} and \sqrt{y} both appear in the function, we must have that $x \geq 0$ and $y \geq 0$. Geometrically, this is the first quadrant of \mathbb{R}^{2}. We could also state it in set notation as $D=\{(x, y) \mid x \geq 0, y \geq 0\}$.
7) Find the directional derivative of the function $f(x, y)=2 x^{2} y^{3}+3 x$ at the point $(1,-2)$ in the direction of the vector $\mathbf{v}=5 \mathbf{i}+12 \mathbf{j}$.

The general formula for the directional derivative at the point \mathbf{r} in the direction of \mathbf{v} is

$$
D_{\mathbf{v}} f(\mathbf{r})=\nabla f(\mathbf{r}) \cdot \hat{\mathbf{v}}
$$

where $\hat{\mathbf{v}}$ is the unit vector parallel to \mathbf{v}. The gradient of f is

$$
\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle 4 x y^{3}+3,6 x^{2} y^{2}\right\rangle
$$

Evaluating this at $(1,-2)$ gives us

$$
\nabla f(1,-2)=\left\langle 4(1)(-2)^{3}+3,6(1)^{2}(-2)^{2}\right\rangle=\langle-29,24\rangle
$$

The unit vector parallel to \mathbf{v} is

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\langle 5,12\rangle}{\sqrt{5^{2}+12^{2}}}=\frac{1}{13}\langle 5,12\rangle
$$

The directional derivative is thus

$$
D_{\mathbf{v}} f(\mathbf{r})=\nabla f(\mathbf{r}) \cdot \hat{\mathbf{v}}=\langle-29,24\rangle \cdot \frac{1}{13}\langle 5,12\rangle=\frac{1}{13}(-29 \cdot 5+24 \cdot 12)=\frac{143}{13}=11
$$

8) Find an equation of the tangent plane to the surface $x y z+y^{2}+z^{3}=6$ at the point $(1,2,3)$.

Notice that this surface is of the form $F(x, y, z)=c$ where $F(x, y, z)=x y z+y^{2}+z^{3}$ and is therefore a level surface of F. Therefore the normal vector of the tangent plane at $(1,2,3)$ is the gradient of F evaluated at this point. The gradient of this function is

$$
\nabla F(x, y, z)=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle y z, x z+2 y, x y+3 z^{2}\right\rangle
$$

Evaluating this at $(1,2,3)$ gives us the normal vector

$$
\mathbf{n}=\nabla F(1,2,3)=\left\langle(2)(3),(1)(3)+2(2),(1)(2)+3(3)^{2}\right\rangle=\langle 6,7,29\rangle
$$

The equation of the tangent plane is therefore

$$
\begin{gathered}
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0 \Rightarrow\langle 6,7,29\rangle \cdot\langle x-1, y-2, z-3\rangle=0 \\
\Rightarrow 6(x-1)+7(y-2)+29(z-3)=0
\end{gathered}
$$

9) Find all critical points for the function $f(x, y)=x^{3}-12 x y+8 y^{3}$ and classify them as either a local minimum, local maximum or saddle point.

Setting each partial derivative equal to zero gives

$$
f_{x}=3 x^{2}-12 y=0, \quad f_{y}=-12 x+24 y^{2}=0
$$

which is a system of equations that we must solve. Solving for x in the second equation gives us $x=2 y^{2}$. Inserting this into the first equation, we get

$$
3\left(2 y^{2}\right)^{2}-12 y=0 \Rightarrow 12 y^{4}-12 y=0 \Rightarrow 12 y\left(y^{3}-1\right)=0
$$

so $y=0$ and $y=1$ are both solutions. If $y=0$ then the system of equations reduces to

$$
3 x^{2}=0, \quad-12 x=0
$$

so $x=0$ is the only solution that satisfies both equations. Therefore $(0,0)$ is a critical point. If $y=1$ then the system of equations reduces to

$$
3 x^{2}-12=0, \quad-12 x+24=0
$$

The first equation has solutions $x= \pm 2$ and the second equation has only one solution $x=2$. Therefore $x=2$ is the only solution that satisfies both equations and $(2,1)$ is a critical point. To classify the critical points, we compute all of the second derivatives:

$$
f_{x x}=6 x, \quad f_{y y}=48 y, \quad f_{x y}=-12
$$

The discriminant is thus

$$
D=f_{x x} f_{y y}-f_{x y}^{2}=(6 x)(48 y)-(-12)^{2}=288 x y-144=144(2 x y-1)
$$

We now apply the second derivative test for each critical point:

- Test for $(0,0): D(0,0)=-144<0 \Rightarrow(0,0)$ is a saddle point.
- Test for $(2,1): D(2,1)=144(3)>0, f_{x x}(2,1)=12>0 \Rightarrow(2,1)$ is a local minimum.

10) Compute the double integral $\iint_{D} 2 x+3 y^{2} d y d x$ where $D=[0,1] \times[-1,2]$.

The iterated integral is stated as

$$
\int_{0}^{1} \int_{-1}^{2} 2 x+3 y^{2} d y d x
$$

Doing the inner integral with respect to y, we get

$$
\int_{-1}^{2} 2 x+3 y^{2} d y=2 x y+\left.y^{3}\right|_{y=-1} ^{y=2}=\left[2 x(2)+2^{3}\right]-\left[2 x(-1)+(-1)^{3}\right]=(4 x+8)-(-2 x-1)=6 x+9
$$

Plugging this into the outer integral gives

$$
\int_{0}^{1} 6 x+9 d x=3 x^{2}+\left.9 x\right|_{x=0} ^{x=1}=3+9=12
$$

