Math 267 – Test 1 Class Time:	Name:
--------------------------------------	-------

Read all directions carefully! Be neat, and box all answers. Points will be deducted for not following directions, sloppiness or lack of relevant work shown.

PLEASE NOTE: "Any student who accesses a phone or any internet-capable device during an exam for any reason automatically receives a score of zero on the exam. All such devices must be turned off and put away and made inaccessible during the exam."

Section I: Multiple Choice. Write your answers in the table provided. If you think the answer is "none of the above", write in E. (6 pts each)

- (1) Which of the following are true:
 - I. For any vectors \mathbf{u} and \mathbf{v} , $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\| + \|\mathbf{v}\|$.
 - II. For any vectors \mathbf{u} and \mathbf{v} , $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - III. For any vectors \mathbf{u} and \mathbf{v} , $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$.
 - IV. For any vectors \mathbf{u} and \mathbf{v} , $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
 - **A.** I and II **B.** II and IV **C.** II, III, and IV **D.** They all are. **E.** None of these
- (2) Which of the following are true:
 - I. In R^3 , if lines L_1 and L_2 are orthogonal to the same plane then they are parallel to each other.
 - II. In R^3 , if lines L_1 and L_2 are parallel to a third line L_3 then they are parallel to each other.
 - III. In R^3 , two lines either intersect or they are parallel
 - IV. In R^3 , two planes either intersect or are parallel.
 - A. I, II and IV. B. II and IV C. II, III, and IV D. They all are. E. None of these
- 3. Find the angle (in degrees) between the vectors < 1,2,3 > and <2,-1,7>. (Round to two decimal places.)

A. 81.41° **B.** 40.20° **C.** 72.02° **D.** 90.00° **E.** None of these

4. Find an equation of the plane through (2,1,3) that is parallel to the plane x - 9y + 13z = 5

A.
$$2x + y + 3z = 37$$

B. $x - 9y + 13z = 32$
C. $x - 9y + 13z = 15$
D. $x + 9y + 13z = 5$

$$\mathbf{F} \quad \mathbf{None} \quad \text{of these}$$

E. None of these

5. Which one of the following are parametric equations for the tangent line to the curve

$$x = t^3, y = t^2, z = t$$

at the point (-1,1,-1)?

A.
$$x = -1 + 3t$$
, $y = 1 - 2t$, $z = -1 + t$

B.
$$x = -1 + 3t^2$$
, $y = 1 + 2t$, $z = -1 + t$

C.
$$x = -1 - 3t$$
, $y = 1 + 2t$, $z = 1 - t$

D.
$$x = -1 + 3t$$
, $y = 1 - 2t$, $z = 1 + t$

- E. None of these
- 6. Which vector is in the same direction as (1,2,2) and has length 6?

A.
$$\langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle$$
 B. $\langle \frac{2}{3}, \frac{4}{3}, \frac{4}{3} \rangle$ **C**. $\langle 2, 4, 4 \rangle$ **D**. $\langle \frac{1}{6}, \frac{2}{6}, \frac{2}{6} \rangle$ **E**. None of these

7. A force $\mathbf{F} = \langle 3,3,1 \rangle$ moves an object from the point (0,1,2) to the point (3,6,1). Find the work (ignoring units).

8. Which graph below corresponds to $x^2 + y^2 - z^2 = 3$?

9. Find the arc length of the curve:

$$\mathbf{r}(t) = <(\sqrt{3})t$$
, $\sin t$, $\cos t >$ where $0 \le t \le 3$

- **A.** 6
- **B.** $3\sqrt{3}$
- **C**. 12
- **D**. $6\sqrt{3}$
- **E.** None of these
- 10. Which of the following points is closest to the yz-plane?
 - **A.** (10,2,6)
- **B.** (-3,0,0)
- **C**. (2,7,100)
- **D**. (1,3,9)

Multiple Choice Table

Question	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Section II: Free Response. Show all work and be neat.

(11) [10 pts] Determine whether the lines

$$L_1$$
: $x = 2 + t$, $y = 21 + 7t$, $z = 15 + 4t$

$$L_2$$
: $x = -5 + 2t$, $y = -18 + 9t$, $z = -11 + 7t$

intersect, are skew, or are parallel. If they intersect determine the point of intersection; if not leave that part of the question blank.

Circle One: Intersect or Skew or Parallel.

Point of intersection:

(12) Decompose the vector $\mathbf{u} = \langle 3, -13 \rangle$ into two orthogonal vectors, one parallel to $\mathbf{v} = \langle 1, 2 \rangle$ and one orthogonal to \mathbf{v} . [10 pts]

 $\operatorname{proj}_{v}u=$

 $\operatorname{orth}_{v} \boldsymbol{u} = \underline{\hspace{1cm}}$

(13) [10 pts] Find an equation of the plane through the points P(0,0,0), Q(0,1,0), R(1,2,3)

An	swer:	
(14) [10 pts] Find the velocity and position vectors of a particle with acceleration $a(t) = <0.0,2>$ and initial conditions $v(0) = <1,-2,3>$ and $r(0) = <2.0,2>$.		
	v(t) =	
	r (t) =	