MAT266 Spring 2019 Exam 3 Review

1. Suppose a series $\sum_{n=1}^{\infty} a_{n}$ meets the conditions to use the ratio test. What, if any, is the most specific conclusion that may be drawn if:
(a) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{5}{3}$
(b) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}$
(c) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$
(d) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$
2. Consider the series $\sum_{n=6}^{\infty} \frac{n+9}{n!}$. Find $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
3. Consider the series $\sum_{n=6}^{\infty} \frac{(5 n+3) 5^{n+2}}{8^{n}}$. Find $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
4. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-5)^{n}}{(n+1) 3^{2 n+1}}$ is absolutely convergent, conditionally convergent, or divergent.
5. Determine whether the series $\sum_{n=0}^{\infty} \frac{n \cdot 5^{n}}{3^{2 n+1}}$ is absolutely convergent, conditionally convergent, or divergent.
6. Determine whether the series $\sum_{n=1}^{\infty} \frac{e^{n-6}}{\sqrt{n+7}(n+8)!}$ is absolutely convergent, conditionally convergent, or divergent.
7. Find the largest open interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n!}$.
8. Find the largest open interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n+7}$.
9. Find the largest open interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n \cdot 2^{n}}$.
10. Find the largest open interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(5 x)^{n}}{n^{4}}$.
11. Find the largest open interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+1}}{3^{n-1}}$.
12. Find the largest open interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} n!(3 x+1)^{n}$.
13. Find the power series representation of the function $f(x)=\frac{3}{4-x}$ for $|x|<4$ by using the fact that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
14. Find the power series representation of the function $f(x)=\frac{x^{2}}{2+x}$ for $|x|<2$ by using the fact that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
15. Find the power series representation of the function $f(x)=\frac{x^{3}}{4-x}$ for $|x|<4$ by using the fact that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
16. Find the power series representation of the function $f(x)=\frac{x}{\frac{1}{2}-x}$ for $|x|<\frac{1}{2}$ by using the fact that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
17. Find a power series representation for $f(x)=\ln (1+x)$. Hint: $\ln (1+x)=\int \frac{1}{1+x} d x$.
18. Find a power series representation for $f(x)=\ln (1-x)$. Hint: $\ln (1-x)=\int \frac{-1}{1-x} d x$.
19. Find a power series representation for $f(x)=\arctan x$. Hint: $\arctan x=\int \frac{1}{1+x^{2}} d x$.
20. Find the first three non-zero terms of the Taylor series for $f(x)=x^{-3}$ about $a=1$.
21. Find the first three non-zero terms of the Maclaurin series for $f(x)=(1+x)^{-2}$.
22. Find the first three non-zero terms of the Maclaurin series for $f(x)=(1-x)^{-2}$.
23. A function $f(x)$ has a Maclaurin Series on $(-1,1)$. If possible, find the first three nonzero terms of the Maclaurin series if $f(0)=5 ; f^{\prime}(0)=-2 ; f^{\prime \prime}(0)=2$.
24. A function $f(x)$ has a Maclaurin Series on $(-1,1)$. If possible, find the first three nonzero terms of the Maclaurin series if $f(0)=0 ; f^{\prime}(0)=-1 ; f^{\prime \prime}(0)=4 ; f^{\prime \prime \prime}(0)=6$.
25. A function $f(x)$ has a Maclaurin Series on $(-1,1)$. If possible, find the first three nonzero terms of the Maclaurin series if $f(0)=2 ; f^{\prime}(0)=0 ; f^{\prime \prime}(0)=1$.
26. Use the known Maclaurin series for $\sin x$ to find the first three nonzero terms of the Maclaurin series for $f(x)=\sin \left(x^{2}\right)$.
27. Use the known Maclaurin series for $\sin x$ to find the first three nonzero terms of the Maclaurin series for $f(x)=x \sin (3 x)$.
28. Use the known Maclaurin series for $\cos x$ to find the Maclaurin series for $f(x)=\frac{x}{27} \cos (3 x)$.
29. Use the known Maclaurin series for $\cos x$ to find the Maclaurin series for $f(x)=x \cos \left(\frac{x}{2}\right)$.
30. Use the known Maclaurin series for e^{x} to find the Maclaurin series for $f(x)=x^{2} e^{3 x}$.
31. Use the known Maclaurin series for e^{x} to find the Maclaurin series for $f(x)=e^{-x^{2}}$.
32. The resistivity ρ of a given metal depends on temperature and can be modeled by the equation

$$
\rho(t)=\rho_{20} e^{\alpha(t-20)}
$$

where t is the temperature in ${ }^{\circ} C$, and ρ_{20} and α are constants depending on the metal. At most temperatures, resistivity can be approximated by the second-degree (quadratic) Taylor polynomial centered at $t=20$. Find an expression for the second-degree Taylor polynomial centered at $t=20$.
33. Eliminate the parameter to find the Cartesian equation of the curve $x=e^{t}-1 ; y=e^{2 t}$.
34. Find the Cartesian equation of the curve $x=5 \cos t$; $y=5 \sin t, 0 \leq t \leq 2 \pi$.
35. Find the Cartesian equation of the curve $x=5 \sin t ; y=3 \cos t, 0 \leq t \leq 2 \pi$.
36. Find the Cartesian equation of the curve $x=2+3 \cos t$; $y=5+3 \sin t, 0 \leq t \leq 2 \pi$.
37. Describe the parametric curve for the set of parametric equations $x=5 \cos t ; y=2 \sin t$, $0 \leq t \leq 2 \pi$. Include the starting point, the terminal point, and the direction.
38. Describe the parametric curve for the set of parametric equations $x=2+\cos t$; $y=$ $3+\sin t, 0 \leq t \leq \pi$. Include the starting point, the terminal point, and the direction.
39. For the parametric curve defined by $x=t^{4}-t-3$ and $y=3 \ln t-t^{2}+3$,
(a) Algebraically find the equation of the line tangent to the curve at the point corresponding to $t=1$.
(b) Find all values of t where the tangent line to the graph of the curve is horizontal.
40. For the parametric curve defined by $x=8 t+\ln t$ and $y=9 t-\ln t$,
(a) Algebraically find the equation of the line tangent to the curve at the point corresponding to $t=1$.
(b) Find all values of t where the tangent line to the graph of the curve is horizontal.
41. If a projectile is fired with an initial velocity of v_{0} at an angle of α above the horizontal and air resistance is assumed to be negligible, then its position after t seconds is given by the parametric equations

$$
x=\left(v_{0} \cos \alpha\right) t \quad y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}
$$

where g is the acceleration due to gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right), \alpha$ is the angle of elevation, and v_{0} is the initial velocity.
(a) Find $d y / d x$
(b) Suppose a projectile is fired with $v_{0}=200 \mathrm{~m} / \mathrm{s}$ at an angle $\alpha=30^{\circ}$. At what time does it reach its maximum height? Round your answer to the nearest tenth of a second.
42. Find the exact length of the curve defined by the set of parametric equations $x=\sin (5 t)$, $y=\cos (5 t)$ for $0 \leq t \leq \frac{\pi}{4}$.
43. Find the exact length of the curve defined by the set of parametric equations $x=t^{2}+1$, $y=t^{3}$ for $0 \leq t \leq 1$.

Answers

1. (a) diverges
(b) converges absolutely
(c) cannot draw conclusion
(d) converges absolutely
2. 0
3. $\frac{5}{8}$
4. converges absolutely
5. converges absolutely
6. converges absolutely
7. $(-\infty, \infty), \infty$
8. $(-1,1), 1$
9. $(-1,3), 2$
10. $\left(-\frac{1}{5}, \frac{1}{5}\right), \frac{1}{5}$
11. $(-3,3), 3$
12. $\left\{-\frac{1}{3}\right\}, 0$
13. $\sum_{n=0}^{\infty} \frac{3 x^{n}}{4^{n+1}}$
14. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+2}}{2^{n+1}}$
15. $\sum_{n=0}^{\infty} \frac{x^{n+3}}{4^{n+1}}$
16. $\sum_{n=0}^{\infty}(2 x)^{n+1}$
17. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}$ for $|x|<1$
18. $\sum_{n=0}^{\infty} \frac{-x^{n+1}}{n+1}$ for $|x|<1$
19. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ for $|x|<1$
20. $1-3(x-1)+6(x-1)^{2}$
21. $1-2 x+3 x^{2}$
22. $1+2 x+3 x^{2}$
23. $5-2 x+x^{2}$
24. $-x+2 x^{2}+x^{3}$
25. not possible with given information
26. $x^{2}-\frac{x^{6}}{6}+\frac{x^{10}}{120}$
27. $3 x^{2}-\frac{3^{3} x^{4}}{3!}+\frac{3^{5} x^{6}}{5!}$
28. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n+1}}{27(2 n)!}$
29. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2^{2 n}(2 n)!}$
30. $\sum_{n=0}^{\infty} \frac{3^{n} x^{n+2}}{n!}$
31. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}$
32. $\rho_{20}+\rho_{20} \alpha(t-20)+\frac{\rho_{20} \alpha^{2}}{2}(t-20)^{2}$
33. $y=(x+1)^{2}$
34. $x^{2}+y^{2}=25$
35. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
36. $(x-2)^{2}+(y-5)^{2}=9$
37. ellipse centered at origin with x-radius of 5 and y-radius of 2 , starts and stops at $(5,0)$, around once counterclockwise
38. semicircle centered at $(2,3)$ with radius of 1 , starts at $(3,3)$ and stops at $(1,3)$, counterclockwise
39. (a) $\frac{1}{3} x+3$
(b) $t=-\sqrt{\frac{3}{2}} ; t=\sqrt{\frac{3}{2}}$
40. (a) $\frac{8}{9} x+\frac{17}{9}$
(b) $t=\frac{1}{9}$
41. (a) $\frac{d y}{d x}=\frac{v_{0} \sin \alpha-g t}{v_{0} \cos \alpha}$
(b) $t \approx 10.2$ seconds
42. $\frac{5 \pi}{4}$
43. $\frac{1}{27}\left(13^{3 / 2}-8\right)$
