MAT266 Spring 2019 Exam 3 Review

- 1. Suppose a series $\sum_{n=1}^{\infty} a_n$ meets the conditions to use the ratio test. What, if any, is the most specific conclusion that may be drawn if:
 - (a) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{5}{3}$ (b) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2}$ (c) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ (d) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$
- 2. Consider the series $\sum_{n=6}^{\infty} \frac{n+9}{n!}$. Find $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.
- 3. Consider the series $\sum_{n=6}^{\infty} \frac{(5n+3)5^{n+2}}{8^n}$. Find $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.
- 4. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-5)^n}{(n+1)3^{2n+1}}$ is absolutely convergent, conditionally convergent, or divergent.
- 5. Determine whether the series $\sum_{n=0}^{\infty} \frac{n \cdot 5^n}{3^{2n+1}}$ is absolutely convergent, conditionally convergent, or divergent.
- 6. Determine whether the series $\sum_{n=1}^{\infty} \frac{e^{n-6}}{\sqrt{n+7}(n+8)!}$ is absolutely convergent, conditionally convergent, or divergent.
- 7. Find the largest **open** interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(3x)^n}{n!}$.
- 8. Find the largest **open** interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+7}$.
- 9. Find the largest **open** interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \cdot 2^n}$.
- 10. Find the largest **open** interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(5x)^n}{n^4}$.
- 11. Find the largest **open** interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^n x^{n+1}}{3^{n-1}}.$

- 12. Find the largest **open** interval of convergence and the radius of convergence for $\sum_{n=1}^{\infty} n! (3x+1)^n.$
- 13. Find the power series representation of the function $f(x) = \frac{3}{4-x}$ for |x| < 4 by using the fact that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.
- 14. Find the power series representation of the function $f(x) = \frac{x^2}{2+x}$ for |x| < 2 by using the fact that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.
- 15. Find the power series representation of the function $f(x) = \frac{x^3}{4-x}$ for |x| < 4 by using the fact that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.
- 16. Find the power series representation of the function $f(x) = \frac{x}{\frac{1}{2} x}$ for $|x| < \frac{1}{2}$ by using the fact that $\frac{1}{1 x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.

17. Find a power series representation for $f(x) = \ln(1+x)$. *Hint:* $\ln(1+x) = \int \frac{1}{1+x} dx$.

- 18. Find a power series representation for $f(x) = \ln(1-x)$. *Hint:* $\ln(1-x) = \int \frac{-1}{1-x} dx$.
- 19. Find a power series representation for $f(x) = \arctan x$. *Hint:* $\arctan x = \int \frac{1}{1+x^2} dx$.
- 20. Find the first three non-zero terms of the Taylor series for $f(x) = x^{-3}$ about a = 1.
- 21. Find the first three non-zero terms of the Maclaurin series for $f(x) = (1+x)^{-2}$.
- 22. Find the first three non-zero terms of the Maclaurin series for $f(x) = (1 x)^{-2}$.
- 23. A function f(x) has a Maclaurin Series on (-1, 1). If possible, find the first three non-zero terms of the Maclaurin series if f(0) = 5; f'(0) = -2; f''(0) = 2.
- 24. A function f(x) has a Maclaurin Series on (-1, 1). If possible, find the first three non-zero terms of the Maclaurin series if f(0) = 0; f'(0) = -1; f''(0) = 4; f'''(0) = 6.
- 25. A function f(x) has a Maclaurin Series on (-1, 1). If possible, find the first three non-zero terms of the Maclaurin series if f(0) = 2; f'(0) = 0; f''(0) = 1.

- 26. Use the known Maclaurin series for $\sin x$ to find the first three **nonzero** terms of the Maclaurin series for $f(x) = \sin(x^2)$.
- 27. Use the known Maclaurin series for $\sin x$ to find the first three **nonzero** terms of the Maclaurin series for $f(x) = x \sin(3x)$.
- 28. Use the known Maclaurin series for $\cos x$ to find the Maclaurin series for $f(x) = \frac{x}{27}\cos(3x)$.
- 29. Use the known Maclaurin series for $\cos x$ to find the Maclaurin series for $f(x) = x \cos\left(\frac{x}{2}\right)$.
- 30. Use the known Maclaurin series for e^x to find the Maclaurin series for $f(x) = x^2 e^{3x}$.
- 31. Use the known Maclaurin series for e^x to find the Maclaurin series for $f(x) = e^{-x^2}$.
- 32. The resistivity ρ of a given metal depends on temperature and can be modeled by the equation

$$\rho(t) = \rho_{20} e^{\alpha(t-20)}$$

where t is the temperature in $^{\circ}C$, and ρ_{20} and α are constants depending on the metal. At most temperatures, resistivity can be approximated by the second-degree (quadratic) Taylor polynomial centered at t = 20. Find an expression for the second-degree Taylor polynomial centered at t = 20.

- 33. Eliminate the parameter to find the Cartesian equation of the curve $x = e^t 1$; $y = e^{2t}$.
- 34. Find the Cartesian equation of the curve $x = 5 \cos t$; $y = 5 \sin t$, $0 \le t \le 2\pi$.
- 35. Find the Cartesian equation of the curve $x = 5 \sin t$; $y = 3 \cos t$, $0 \le t \le 2\pi$.
- 36. Find the Cartesian equation of the curve $x = 2 + 3\cos t$; $y = 5 + 3\sin t$, $0 \le t \le 2\pi$.
- 37. Describe the parametric curve for the set of parametric equations $x = 5 \cos t$; $y = 2 \sin t$, $0 \le t \le 2\pi$. Include the starting point, the terminal point, and the direction.
- 38. Describe the parametric curve for the set of parametric equations $x = 2 + \cos t$; $y = 3 + \sin t$, $0 \le t \le \pi$. Include the starting point, the terminal point, and the direction.
- 39. For the parametric curve defined by $x = t^4 t 3$ and $y = 3 \ln t t^2 + 3$,
 - (a) Algebraically find the equation of the line tangent to the curve at the point corresponding to t = 1.
 - (b) Find all values of t where the tangent line to the graph of the curve is horizontal.
- 40. For the parametric curve defined by $x = 8t + \ln t$ and $y = 9t \ln t$,
 - (a) Algebraically find the equation of the line tangent to the curve at the point corresponding to t = 1.

- (b) Find all values of t where the tangent line to the graph of the curve is horizontal.
- 41. If a projectile is fired with an initial velocity of v_0 at an angle of α above the horizontal and air resistance is assumed to be negligible, then its position after t seconds is given by the parametric equations

$$x = (v_0 \cos \alpha)t$$
 $y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2$

where g is the acceleration due to gravity (9.8 m/s²), α is the angle of elevation, and v_0 is the initial velocity.

- (a) Find dy/dx
- (b) Suppose a projectile is fired with $v_0 = 200 \text{ m/s}$ at an angle $\alpha = 30^{\circ}$. At what time does it reach its maximum height? Round your answer to the nearest tenth of a second.
- 42. Find the exact length of the curve defined by the set of parametric equations $x = \sin(5t)$, $y = \cos(5t)$ for $0 \le t \le \frac{\pi}{4}$.
- 43. Find the exact length of the curve defined by the set of parametric equations $x = t^2 + 1$, $y = t^3$ for $0 \le t \le 1$.

Answers

```
1. (a) diverges
```

- (b) converges absolutely
- (c) cannot draw conclusion
- (d) converges absolutely

```
2. 0
```

- 3. $\frac{5}{8}$
- 4. converges absolutely
- 5. converges absolutely
- 6. converges absolutely

7.
$$(-\infty,\infty)$$
 , ∞

- 8. (-1,1), 1
- 9. (-1,3), 2

10. $(-\frac{1}{5}, \frac{1}{5}), \frac{1}{5}$
11. (-3,3), 3
12. $\left\{-\frac{1}{3}\right\}, 0$
13. $\sum_{n=0}^{\infty} \frac{3x^n}{4^{n+1}}$
14. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+2}}{2^{n+1}}$
15. $\sum_{n=0}^{\infty} \frac{x^{n+3}}{4^{n+1}}$
16. $\sum_{n=0}^{\infty} (2x)^{n+1}$
17. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$ for $ x < 1$
18. $\sum_{n=0}^{\infty} \frac{-x^{n+1}}{n+1}$ for $ x < 1$
19. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ for $ x < 1$
20. $1 - 3(x - 1) + 6(x - 1)^2$
21. $1 - 2x + 3x^2$
22. $1 + 2x + 3x^2$
23. $5 - 2x + x^2$
24. $-x + 2x^2 + x^3$
25. not possible with given information
26. $x^2 - \frac{x^6}{6} + \frac{x^{10}}{120}$
27. $3x^2 - \frac{3^3x^4}{3!} + \frac{3^5x^6}{5!}$
28. $\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n} x^{2n+1}}{27(2n)!}$

	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2^{2n} (2n)!}$
30.	$\sum_{n=0}^{\infty} \frac{3^n x^{n+2}}{n!}$
31.	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$
32.	$\rho_{20} + \rho_{20}\alpha(t-20) + \frac{\rho_{20}\alpha^2}{2}(t-20)^2$
33.	$y = (x+1)^2$
34.	$x^2 + y^2 = 25$
35.	$\frac{x^2}{25} + \frac{y^2}{9} = 1$
36.	$(x-2)^2 + (y-5)^2 = 9$

- 37. ellipse centered at origin with x-radius of 5 and y-radius of 2, starts and stops at (5,0), around once counterclockwise
- 38. semicircle centered at (2,3) with radius of 1, starts at (3,3) and stops at (1,3), counterclockwise

39. (a)
$$\frac{1}{3}x + 3$$

(b) $t = -\sqrt{\frac{3}{2}}; t = \sqrt{\frac{3}{2}}$
40. (a) $\frac{8}{9}x + \frac{17}{9}$
(b) $t = \frac{1}{9}$
41. (a) $\frac{dy}{dx} = \frac{v_0 \sin \alpha - gt}{v_0 \cos \alpha}$
(b) $t \approx 10.2$ seconds
42. $\frac{5\pi}{4}$
43. $\frac{1}{27} (13^{3/2} - 8)$