MAT 242 Test 3 SOLUTIONS, FORM A

1. Let $\vec{v}_{1}=\left[\begin{array}{r}-2 \\ 2 \\ 1 \\ 4\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}4 \\ 1 \\ -2 \\ 2\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{r}1 \\ 4 \\ 2 \\ -2\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{rrr}
-2 & 4 & 1 \\
2 & 1 & 4 \\
1 & -2 & 2 \\
4 & 2 & -2
\end{array}\right]
$$

a. [15 points] Find the orthogonal projection of $\left[\begin{array}{r}-13 \\ 18 \\ 9 \\ 1\end{array}\right]$ into W, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{75}{25}=3, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{-50}{25}=-2, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \vec{v}_{3}}=\frac{75}{25}=3, \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
-11 \\
16 \\
13 \\
2
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=25 \\
\vec{v}_{2} \cdot \vec{v}_{2}=25 \\
\vec{v}_{3} \cdot \vec{v}_{3}=25 \\
\left\{\left[\begin{array}{r}
4 / 5 \\
1 / 5 \\
-2 / 5 \\
2 / 5
\end{array}\right],\left[\begin{array}{r}
1 / 5 \\
4 / 5 \\
2 / 5 \\
-2 / 5
\end{array}\right],\left[\begin{array}{r}
-2 / 5 \\
2 / 5 \\
1 / 5 \\
4 / 5
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM A

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{r}0 \\ -2 \\ -2 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ -3 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 5 \\ 7\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. $[15$ points $]$ Find the vector in W closest to $\left[\begin{array}{r}-1 \\ 7 \\ -5 \\ -4\end{array}\right]$.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{l}
-5 \\
-4 \\
-3
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
0 \\
7 \\
-5 \\
-4
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
\begin{gathered}
N E W_{1}=O L D_{1}=\left[\begin{array}{l}
0 \\
-2 \\
-2 \\
-1
\end{array}\right] \\
N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{r}
0 \\
-3 \\
0 \\
-3
\end{array}\right]-\frac{9}{9}\left[\begin{array}{r}
0 \\
-2 \\
-2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
2 \\
-2
\end{array}\right] \\
N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{l}
0 \\
5 \\
5 \\
7
\end{array}\right]-\frac{-27}{9}\left[\begin{array}{r}
0 \\
-2 \\
-2 \\
-1
\end{array}\right]-\frac{-9}{9}\left[\begin{array}{r}
0 \\
-1 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-2 \\
1 \\
2
\end{array}\right]
\end{gathered}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM A

3. Do the following, for the following set of data points: $(-4,-93),(-1,-3),(0,-1),(4,27)$.
a. [10 points] Find the parabola $y=a x^{2}+b x+c$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
16 & -4 & 1 \\
1 & -1 & 1 \\
0 & 0 & 1 \\
16 & 4 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
-93 \\
-3 \\
-1 \\
27
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
-2393 / 979 \\
14445 / 979 \\
6221 / 979
\end{array}\right]} \\
y=\frac{-2393}{979} x^{2}+\frac{14445}{979} x+\frac{6221}{979}=(-2.444331) x^{2}+(14.754852) x+6.354443
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+c$ with no linear term which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
16 & 1 \\
1 & 1 \\
0 & 1 \\
16 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
-93 \\
-3 \\
-1 \\
27
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
c
\end{array}\right]=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]} \\
y=-2 x^{2}-1=(-2.000000) x^{2}-1.000000
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM A

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{array}{rr}
-x_{1}+5 x_{2}-3 x_{3}= & -2 \\
2 x_{1}+3 x_{2}-4 x_{3}= & 0 \\
3 x_{1}+x_{2}-3 x_{3}= & 2 \\
3 x_{1}-4 x_{2}+5 x_{3}= & -4
\end{array}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{l}
-141 / 217 \\
-342 / 217 \\
-361 / 217
\end{array}\right]=\left[\begin{array}{l}
-0.649770 \\
-1.576037 \\
-1.663594
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
-4 \\
2 \\
-4 \\
-4
\end{array}\right]\right\}
$$

$$
\begin{gathered}
\left.A^{\top}=\left[\begin{array}{lll}
-4 & 2 & -4
\end{array}-4\right] \xrightarrow[\mathrm{RREF}]{\left[\begin{array}{lll}
1 & -1 / 2 & 1
\end{array}\right.} 1\right] \\
-4 x_{1}+2 x_{2}-4 x_{3}-4 x_{4}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{r}
1 / 2 \\
1 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0
\end{array}\right]+\gamma \cdot\left[\begin{array}{r}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM B

1. Let $\vec{v}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 0 \\ -2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ -2\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{rrr}
1 & -2 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -2 & 0
\end{array}\right]
$$

a. [15 points] Find the vector in W closest to $\left[\begin{array}{r}-5 \\ 4 \\ -1 \\ 7\end{array}\right]$, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{-27}{9}=-3, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{0}{9}=0, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \vec{v}_{3}}=\frac{-1}{1}=-1, \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
-3 \\
6 \\
-1 \\
6
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=9 \\
\vec{v}_{2} \cdot \vec{v}_{2}=9 \\
\vec{v}_{3} \cdot \vec{v}_{3}=1 \\
\left\{\left[\begin{array}{r}
1 / 3 \\
-2 / 3 \\
0 \\
-2 / 3
\end{array}\right],\left[\begin{array}{r}
-2 / 3 \\
1 / 3 \\
0 \\
-2 / 3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM B

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{r}-2 \\ 4 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{r}-5 \\ -5 \\ -15 \\ 0\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. $[15$ points $]$ Find the vector in W closest to $\left[\begin{array}{r}6 \\ -12 \\ -8 \\ 9\end{array}\right]$.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
4 \\
-8 \\
-2
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
2 \\
-14 \\
-6 \\
8
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
\begin{gathered}
N E W_{1}=O L D_{1}=\left[\begin{array}{r}
-2 \\
4 \\
1 \\
2
\end{array}\right] \\
N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{l}
0 \\
5 \\
5 \\
0
\end{array}\right]-\frac{25}{25}\left[\begin{array}{r}
-2 \\
4 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
1 \\
4 \\
-2
\end{array}\right] \\
N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{r}
-5 \\
-5 \\
-15 \\
0
\end{array}\right]-\frac{-25}{25}\left[\begin{array}{r}
-2 \\
4 \\
1 \\
2
\end{array}\right]-\frac{-75}{25}\left[\begin{array}{r}
2 \\
1 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
-2 \\
-4
\end{array}\right]
\end{gathered}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM B

3. Do the following, for the following set of data points: $(-5,-133),(-4,-71),(0,-3),(3,27)$.
a. [10 points] Find the parabola $y=a x^{2}+b x+c$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
25 & -5 & 1 \\
16 & -4 & 1 \\
0 & 0 & 1 \\
9 & 3 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
-133 \\
-71 \\
-3 \\
27
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
-1821 / 781 \\
10613 / 781 \\
3537 / 781
\end{array}\right]} \\
y=\frac{-1821}{781} x^{2}+\frac{10613}{781} x+\frac{3537}{781}=(-2.331626) x^{2}+(13.588988) x+4.528809
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+c$ with no linear term which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
25 & 1 \\
16 & 1 \\
0 & 1 \\
9 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
-133 \\
-71 \\
-3 \\
27
\end{array}\right] \\
y=\frac{-1968}{337} x^{2}+\frac{9435}{337}=(-5.839763) x^{2}+27.997033
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM B

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{aligned}
4 x_{1}+5 x_{2} & =-3 \\
x_{1}+x_{2}+x_{3} & =0 \\
-4 x_{3} & =2 \\
-3 x_{1}+3 x_{2}+2 x_{3} & =-7
\end{aligned}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
1544 / 1871 \\
-16015 / 13097 \\
-5809 / 13097
\end{array}\right]=\left[\begin{array}{r}
0.825227 \\
-1.222799 \\
-0.443537
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
0 \\
1 \\
-4 \\
4
\end{array}\right]\right\}
$$

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{lll}
0 & 1-4 & 4
\end{array}\right] \overrightarrow{\operatorname{RREF}}\left[\begin{array}{llll}
0 & 1 & -4 & 4
\end{array}\right] \\
x_{2}-4 x_{3}+4 x_{4}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{l}
0 \\
4 \\
1 \\
0
\end{array}\right]+\gamma \cdot\left[\begin{array}{r}
0 \\
-4 \\
0 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM C

1. Let $\vec{v}_{1}=\left[\begin{array}{r}0 \\ -2 \\ 1 \\ -2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}0 \\ 1 \\ -2 \\ -2\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{rrr}
0 & 0 & 1 \\
-2 & 1 & 0 \\
1 & -2 & 0 \\
-2 & -2 & 0
\end{array}\right]
$$

a. [15 points] Find the vector in W closest to $\left[\begin{array}{r}2 \\ 1 \\ -2 \\ -11\end{array}\right]$, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{18}{9}=2, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{27}{9}=3, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \vec{v}_{3}}=\frac{2}{1}=2, \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
2 \\
-1 \\
-4 \\
-10
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=9 \\
\vec{v}_{2} \cdot \vec{v}_{2}=9 \\
\vec{v}_{3} \cdot \vec{v}_{3}=1 \\
\left\{\left[\begin{array}{r}
0 \\
-2 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
1 / 3 \\
-2 / 3 \\
-2 / 3
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM C

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{r}1 \\ 2 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ -1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{r}9 \\ -1 \\ -1 \\ -4\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. [15 points] Find the orthogonal projection of $\left[\begin{array}{r}1 \\ -4 \\ 1 \\ 3\end{array}\right]$ into W.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
1 \\
-2 \\
3 \\
2
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
\begin{gathered}
N E W_{1}=O L D_{1}=\left[\begin{array}{r}
1 \\
2 \\
-2 \\
0
\end{array}\right] \\
N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{r}
-3 \\
-1 \\
2 \\
2
\end{array}\right]-\frac{-9}{9}\left[\begin{array}{r}
1 \\
2 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1 \\
0 \\
2
\end{array}\right] \\
N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{r}
9 \\
-1 \\
-1 \\
-4
\end{array}\right]\left[\begin{array}{r}
9 \\
9
\end{array} \begin{array}{r}
1 \\
2 \\
-2 \\
0
\end{array}\right]-\frac{-27}{9}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
2
\end{array}\right]
\end{gathered}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM C

3. Do the following, for the following set of data points: $(-5,-10),(-4,12),(0,0),(2,18)$.
a. [10 points] Find the line $y=a x+b$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-5 & 1 \\
-4 & 1 \\
0 & 1 \\
2 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
-10 \\
12 \\
0 \\
18
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
292 / 131 \\
1166 / 131
\end{array}\right]} \\
y=\frac{292}{131} x+\frac{1166}{131}=(2.229008) x+8.900763
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+c$ with no linear term which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
25 & 1 \\
16 & 1 \\
0 & 1 \\
4 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
-10 \\
12 \\
0 \\
18
\end{array}\right] \\
y=\frac{-844}{1563} x^{2}+\frac{5770}{521}=(-0.539987) x^{2}+11.074856
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM C

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{aligned}
-2 x_{1}+2 x_{2}+4 x_{3}= & 5 \\
-x_{1}+4 x_{2}+5 x_{3}= & 0 \\
x_{1}+5 x_{2}+3 x_{3} & =0 \\
-x_{1}+x_{2} & =-5
\end{aligned}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
785 / 399 \\
-940 / 399 \\
375 / 133
\end{array}\right]=\left[\begin{array}{r}
1.967419 \\
-2.355890 \\
2.819549
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
2 \\
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{r}
-4 \\
0 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
-2 \\
3
\end{array}\right]\right\}
$$

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{rrrr}
2 & 2 & -2 & 1 \\
-4 & 0 & 2 & -4 \\
-2 & 2 & -2 & 3
\end{array}\right] \xrightarrow[\text { RREF }]{ }\left[\begin{array}{lllr}
1 & 0 & 0 & -1 / 2 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -3
\end{array}\right] \\
2 x_{1}+2 x_{2}-2 x_{3}+x_{4}=0 \\
-4 x_{1}+2 x_{3}-4 x_{4}=0 \\
-2 x_{1}+2 x_{2}-2 x_{3}+3 x_{4}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{r}
1 / 2 \\
2 \\
3 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points for the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM D

1. Let $\vec{v}_{1}=\left[\begin{array}{r}0 \\ 0 \\ -1 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 2\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{r}1 \\ -2 \\ 0 \\ -2\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{rrr}
0 & 2 & 1 \\
0 & -1 & -2 \\
-1 & 0 & 0 \\
0 & 2 & -2
\end{array}\right]
$$

a. [15 points] Find the orthogonal projection of $\left[\begin{array}{r}4 \\ 1 \\ -2 \\ 1\end{array}\right]$ into W, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{2}{1}=2, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{9}{9}=1, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \vec{v}_{3}}=\frac{0}{9}=0, \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
2 \\
-1 \\
-2 \\
2
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=1 \\
\vec{v}_{2} \cdot \vec{v}_{2}=9 \\
\vec{v}_{3} \cdot \vec{v}_{3}=9 \\
\left\{\left[\begin{array}{r}
2 / 3 \\
-1 / 3 \\
0 \\
2 / 3
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 / 3 \\
-2 / 3 \\
0 \\
-2 / 3
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM D

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{r}-7 \\ -1 \\ -2 \\ -14\end{array}\right],\left[\begin{array}{r}4 \\ -3 \\ -11 \\ -2\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. $[15$ points $]$ Find the vector in W closest to $\left[\begin{array}{r}3 \\ -6 \\ -7 \\ -9\end{array}\right]$.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
1 \\
-2 \\
-9 \\
-8
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
\begin{gathered}
N E W_{1}=O L D_{1}=\left[\begin{array}{l}
2 \\
1 \\
2 \\
4
\end{array}\right] \\
N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{r}
-7 \\
-1 \\
-2 \\
-14
\end{array}\right]-\frac{-75}{25}\left[\begin{array}{l}
2 \\
1 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
4 \\
-2
\end{array}\right] \\
N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{r}
4 \\
-3 \\
-11 \\
-2
\end{array}\right]-\frac{-25}{25}\left[\begin{array}{l}
2 \\
1 \\
2 \\
4
\end{array}\right]-\frac{-50}{25}\left[\begin{array}{r}
-1 \\
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{r}
4 \\
2 \\
-1 \\
-2
\end{array}\right]
\end{gathered}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM D

3. Do the following, for the following set of data points: $(-3,51),(-2,20),(0,0),(4,-40)$.
a. [10 points] Find the line $y=a x+b$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-3 & 1 \\
-2 & 1 \\
0 & 1 \\
4 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
51 \\
20 \\
0 \\
-40
\end{array}\right] \\
y=\frac{-1381}{115} x+\frac{546}{115}=(-12.008696) x+4.747826
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+c$ with no linear term which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
9 & 1 \\
4 & 1 \\
0 & 1 \\
16 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
51 \\
20 \\
0 \\
-40
\end{array}\right] \\
y=\frac{-1303}{571} x^{2}+\frac{13872}{571}=(-2.281961) x^{2}+24.294221
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM D

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{aligned}
4 x_{1}-x_{2}+5 x_{3}= & 7 \\
x_{1}+3 x_{2}-x_{3}= & 5 \\
-x_{1}+x_{2}-4 x_{3}= & 2 \\
-2 x_{2}-5 x_{3}= & -2
\end{aligned}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
647 / 303 \\
3962 / 3333 \\
-733 / 3333
\end{array}\right]=\left[\begin{array}{r}
2.135314 \\
1.188719 \\
-0.219922
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
4 \\
1 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
0 \\
-1
\end{array}\right]\right\}
$$

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{rrrr}
-3 & 0 & 0 & -1 \\
4 & 1 & 3 & -2
\end{array}\right] \xrightarrow[\text { RREF }]{ }\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 / 3 \\
0 & 1 & 3 & -10 / 3
\end{array}\right] \\
-3 x_{1} \\
4 x_{1}+x_{2}+3 x_{3}-2 x_{4}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{r}
0 \\
-3 \\
1 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{r}
-1 / 3 \\
10 / 3 \\
0 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM E

1. Let $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a. [15 points] Find the vector in W closest to $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right]$, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{2}{1}=2, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{3}{1}=3, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \vec{v}_{3}}=\frac{0}{1}=0, \\
\vec{p}=A \vec{c}=\left[\begin{array}{l}
0 \\
2 \\
3 \\
0
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=1 \\
\vec{v}_{2} \cdot \vec{v}_{2}=1 \\
\vec{v}_{3} \cdot \vec{v}_{3}=1 \\
\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM E

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{l}0 \\ 2 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}0 \\ 10 \\ 1 \\ 5\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. $[15$ points $]$ Find the orthogonal projection of $\left[\begin{array}{r}-1 \\ -1 \\ -10 \\ -5\end{array}\right]$ into W.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
-6 \\
-3 \\
2
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
0 \\
-1 \\
-10 \\
-5
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
N E W_{1}=O L D_{1}=\left[\begin{array}{l}
0 \\
2 \\
2 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{l}
0 \\
3 \\
0 \\
3
\end{array}\right]-\frac{9}{9}\left[\begin{array}{l}
0 \\
2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
1 \\
-2 \\
2
\end{array}\right] \\
N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{r}
0 \\
10 \\
1 \\
5
\end{array}\right]-\frac{27}{9}\left[\begin{array}{l}
0 \\
2 \\
2 \\
1
\end{array}\right]-\frac{18}{9}\left[\begin{array}{r}
0 \\
1 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{r}
0 \\
2 \\
-1 \\
-2
\end{array}\right]
\end{gathered}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM E

3. Do the following, for the following set of data points: $(-1,11),(1,3),(2,20),(4,126)$.
a. [10 points] Find the parabola $y=a x^{2}+b x+c$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1 \\
16 & 4 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
11 \\
3 \\
20 \\
126
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
19 / 2 \\
-149 / 26 \\
-95 / 26
\end{array}\right]} \\
y=\frac{19}{2} x^{2}+\frac{-149}{26} x-\frac{95}{26}=(9.500000) x^{2}+(-5.730769) x-3.653846
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+b x$ passing through the origin which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
1 & -1 \\
1 & 1 \\
4 & 2 \\
16 & 4
\end{array}\right] \\
B=\left[\begin{array}{r}
11 \\
3 \\
20 \\
126
\end{array}\right] \\
y=\frac{1957}{211} x^{2}+\frac{-1264}{211} x=(9.274882) x^{2}+(-5.990521) x
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM E

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{aligned}
4 x_{1}+2 x_{3} & =5 \\
-x_{1}+5 x_{2} & =-7 \\
-5 x_{1}+4 x_{2}-2 x_{3} & =3 \\
-3 x_{1}-x_{2} & =-2
\end{aligned}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
238 / 341 \\
-285 / 682 \\
-1015 / 682
\end{array}\right]=\left[\begin{array}{r}
0.697947 \\
-0.417889 \\
-1.488270
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
0 \\
-1 \\
-2 \\
2
\end{array}\right]\right\}
$$

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{lll}
0 & -1 & -2
\end{array} 2\right] \overrightarrow{\mathrm{RREF}}\left[\begin{array}{lll}
0 & 1 & 2-2
\end{array}\right] \\
-x_{2}-2 x_{3}+2 x_{4}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0
\end{array}\right]+\gamma \cdot\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM F

1. Let $\vec{v}_{1}=\left[\begin{array}{r}0 \\ 0 \\ 0 \\ -1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 0 \\ 0\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

a. [15 points] Find the orthogonal projection of $\left[\begin{array}{r}2 \\ 1 \\ -3 \\ 0\end{array}\right]$ into W, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{0}{1}=0, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{-3}{1}=-3, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \overrightarrow{v_{3}}}=\frac{-2}{1}=-2, \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
2 \\
0 \\
-3 \\
0
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=1 \\
\vec{v}_{2} \cdot \vec{v}_{2}=1 \\
\vec{v}_{3} \cdot \vec{v}_{3}=1 \\
\left\{\left[\begin{array}{r}
0 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM F

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{r}2 \\ 0 \\ -10 \\ 7\end{array}\right],\left[\begin{array}{r}-7 \\ 0 \\ -1 \\ -2\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. $[15$ points $]$ Find the vector in W closest to $\left[\begin{array}{r}3 \\ 1 \\ -9 \\ -6\end{array}\right]$.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
34 \\
8 \\
-3
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
3 \\
0 \\
-9 \\
-6
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
\begin{aligned}
& N E W_{1}=O L D_{1}=\left[\begin{array}{r}
-1 \\
0 \\
2 \\
-2
\end{array}\right] \\
& N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{r}
2 \\
0 \\
-10 \\
7
\end{array}\right]-\frac{-36}{9}\left[\begin{array}{r}
-1 \\
0 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-2 \\
0 \\
-2 \\
-1
\end{array}\right] \\
& N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{r}
-7 \\
0 \\
-1 \\
-2
\end{array}\right]-\frac{9}{9}\left[\begin{array}{r}
-1 \\
0 \\
2 \\
-2
\end{array}\right]-\frac{18}{9}\left[\begin{array}{r}
-2 \\
0 \\
-2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-2 \\
0 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM F

3. Do the following, for the following set of data points: $(-5,110),(-3,26),(0,5),(4,-79)$.
a. [10 points] Find the parabola $y=a x^{2}+b x+c$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
25 & -5 & 1 \\
9 & -3 & 1 \\
0 & 0 & 1 \\
16 & 4 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
110 \\
26 \\
5 \\
-79
\end{array}\right] \\
y=\frac{553}{781} x^{2}+\frac{-14518}{781} x-\frac{9325}{781}=(0.708067) x^{2}+(-18.588988) x-11.939821
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+b x$ passing through the origin which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
25 & -5 \\
9 & -3 \\
0 & 0 \\
16 & 4
\end{array}\right] \\
B=\left[\begin{array}{r}
110 \\
26 \\
5 \\
-79
\end{array}\right] \\
y=\frac{244}{3363} x^{2}+\frac{-63064}{3363} x=(0.072554) x^{2}+(-18.752304) x
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM F

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{array}{rr}
-5 x_{1}-x_{2}-2 x_{3}= & 5 \\
2 x_{1}+3 x_{2}-x_{3}= & -7 \\
5 x_{1}+5 x_{2}-2 x_{3}= & -6 \\
-3 x_{1}-x_{2}+3 x_{3}= & -6
\end{array}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
2849 / 4377 \\
-26779 / 8754 \\
-7241 / 2918
\end{array}\right]=\left[\begin{array}{r}
0.650902 \\
-3.059059 \\
-2.481494
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
-1 \\
4 \\
0 \\
4
\end{array}\right]\right\}
$$

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{llll}
-1 & 4 & 0 & 4
\end{array}\right] \overrightarrow{\operatorname{RREF}}\left[\begin{array}{ccc}
1-4 & 0 & -4
\end{array}\right] \\
-x_{1}+4 x_{2} \quad+4 x_{4}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{l}
4 \\
1 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+\gamma \cdot\left[\begin{array}{l}
4 \\
0 \\
0 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM MAKE-UP

1. Let $\vec{v}_{1}=\left[\begin{array}{r}2 \\ -2 \\ 4 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}-4 \\ -1 \\ 2 \\ -2\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{r}-2 \\ 2 \\ 1 \\ 4\end{array}\right]$. Note that $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthogonal set. Also, let W be the subspace spanned by $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

$$
A=\left[\begin{array}{rrr}
2 & -4 & -2 \\
-2 & -1 & 2 \\
4 & 2 & 1 \\
1 & -2 & 4
\end{array}\right]
$$

a. [15 points] Find the vector in W closest to $\left[\begin{array}{r}-7 \\ -13 \\ 6 \\ -11\end{array}\right]$, without inverting any matrices or solving any systems of linear equations.

$$
\begin{gathered}
c_{1}=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{25}{25}=1, \\
c_{2}=\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}}=\frac{75}{25}=3, \\
c_{3}=\frac{\vec{v}_{3} \cdot \vec{u}}{\vec{v}_{3} \cdot \vec{v}_{3}}=\frac{-50}{25}=-2, \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
-6 \\
-9 \\
8 \\
-13
\end{array}\right]
\end{gathered}
$$

Grading: +10 points for finding the $c_{i} \mathrm{~s},+5$ points for finding \vec{p}. Grading for common mistakes: -5 points for using the $\left(A^{\top} A\right)^{-1} A^{\top} \vec{u}$ formula.
b. [10 points] Find an orthonormal basis for W.

$$
\begin{gathered}
\vec{v}_{1} \cdot \vec{v}_{1}=25 \\
\vec{v}_{2} \cdot \vec{v}_{2}=25 \\
\vec{v}_{3} \cdot \vec{v}_{3}=25 \\
\left\{\left[\begin{array}{r}
-2 / 5 \\
2 / 5 \\
1 / 5 \\
4 / 5
\end{array}\right],\left[\begin{array}{r}
-4 / 5 \\
-1 / 5 \\
2 / 5 \\
-2 / 5
\end{array}\right],\left[\begin{array}{r}
2 / 5 \\
-2 / 5 \\
4 / 5 \\
1 / 5
\end{array}\right]\right\}
\end{gathered}
$$

Grading: +5 points for knowing to divide a vector by its length, +5 points for doing it with the orthogonal basis. Grading for common mistakes: +5 points (total) for doing Gram-Schmidt.

MAT 242 Test 3 SOLUTIONS, FORM MAKE-UP

2. Let W be the subspace spanned by $\left\{\left[\begin{array}{r}0 \\ 0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-3 \\ 3 \\ -3 \\ 0\end{array}\right]\right\}$. Note that this basis is not orthogonal.
a. [15 points] Find the orthogonal projection of $\left[\begin{array}{r}6 \\ 0 \\ 1 \\ -3\end{array}\right]$ into W.

$$
\begin{gathered}
\vec{c}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
-3 \\
-2 \\
0
\end{array}\right] \\
\vec{p}=A \vec{c}=\left[\begin{array}{r}
4 \\
-2 \\
1 \\
-4
\end{array}\right]
\end{gathered}
$$

Grading: +3 points for finding A and $\vec{u},+3$ points for the formula, +4 points for the calculation. Grading for common mistakes: -5 points for only finding the coordinates.
b. [15 points] Find an orthogonal basis for W.

$$
\begin{aligned}
& N E W_{1}=O L D_{1}=\left[\begin{array}{r}
0 \\
0 \\
-1 \\
0
\end{array}\right] \\
& N E W_{2}=O L D_{2}-\frac{O L D_{2} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}=\left[\begin{array}{r}
-2 \\
1 \\
1 \\
2
\end{array}\right]-\frac{-1}{1}\left[\begin{array}{r}
0 \\
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1 \\
0 \\
2
\end{array}\right] \\
& N E W_{3}=O L D_{3}-\frac{O L D_{3} \cdot N E W_{1}}{N E W_{1} \cdot N E W_{1}} N E W_{1}-\frac{O L D_{3} \cdot N E W_{2}}{N E W_{2} \cdot N E W_{2}} N E W_{2}=\left[\begin{array}{r}
-3 \\
3 \\
-3 \\
0
\end{array}\right]-\frac{3}{1}\left[\begin{array}{r}
0 \\
0 \\
-1 \\
0
\end{array}\right]-\frac{9}{9}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
0 \\
-2
\end{array}\right]
\end{aligned}
$$

Grading: +5 points for each vector. Grading for common mistakes: +5 points (total) for dividing each vector by its length.

MAT 242 Test 3 SOLUTIONS, FORM MAKE-UP

3. Do the following, for the following set of data points: $(-5,5),(-2,17),(-1,9),(4,149)$.
a. [10 points] Find the parabola $y=a x^{2}+b x+c$ which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
25 & -5 & 1 \\
4 & -2 & 1 \\
1 & -1 & 1 \\
16 & 4 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
5 \\
17 \\
9 \\
149
\end{array}\right] \\
{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
2148 / 829 \\
15202 / 829 \\
27805 / 829
\end{array}\right]} \\
y=\frac{2148}{829} x^{2}+\frac{15202}{829} x+\frac{27805}{829}=(2.591074) x^{2}+(18.337756) x+33.540410
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.
b. [10 points] Find the parabola $y=a x^{2}+c$ with no linear term which best fits these points.

$$
\begin{gathered}
A=\left[\begin{array}{rr}
25 & 1 \\
4 & 1 \\
1 & 1 \\
16 & 1
\end{array}\right] \\
B=\left[\begin{array}{r}
5 \\
17 \\
9 \\
149
\end{array}\right] \\
y=\frac{172}{123} x^{2}+\frac{3557}{123}=(1.398374) x^{2}+28.918699
\end{gathered}
$$

Grading: +3 points for $A,+2$ points for $B,+3$ points for finding the coefficients, +2 points for the equation $y=\cdots$.

MAT 242 Test 3 SOLUTIONS, FORM MAKE-UP

4. [10 points] Find the Least Squares Solution to the following system of linear equations:

$$
\begin{aligned}
-x_{1}+2 x_{2}+2 x_{3} & =-1 \\
-4 x_{1}-2 x_{2}-4 x_{3} & =-3 \\
-2 x_{1}-4 x_{2}-5 x_{3} & =2 \\
-5 x_{1}-4 x_{2} & =3
\end{aligned}
$$

$$
\hat{x}=\left(A^{\top} A\right)^{-1}\left(A^{\top} B\right)=\left[\begin{array}{r}
1884 / 3215 \\
-4833 / 3215 \\
2432 / 3215
\end{array}\right]=\left[\begin{array}{r}
0.586003 \\
-1.503266 \\
0.756454
\end{array}\right]
$$

Grading: +5 points for writing down A and $B,+2$ points for the normal equation, +3 points for the calculation. Grading for common mistakes: -3 points for finding $A \hat{x}$.
5. [15 points] Find a basis for W^{\perp}, the orthogonal complement of W, if W is the subspace spanned by

$$
\left\{\left[\begin{array}{r}
-1 \\
-2 \\
0 \\
4
\end{array}\right],\left[\begin{array}{r}
-3 \\
-3 \\
-2 \\
0
\end{array}\right]\right\}
$$

$$
\begin{gathered}
A^{\top}=\left[\begin{array}{rrrr}
-3 & -3 & -2 & 0 \\
-1 & -2 & 0 & 4
\end{array}\right] \xrightarrow[\text { RREF }]{\left[\begin{array}{rrrr}
1 & 0 & 4 / 3 & 4 \\
0 & 1 & -2 / 3 & -4
\end{array}\right]} \begin{aligned}
&=0 \\
&-3 x_{1}-3 x_{2}-2 x_{3} \\
&-x_{1}-2 x_{2}+4 x_{4}
\end{aligned}=0
\end{gathered}
$$

Parameterized by:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\alpha \cdot\left[\begin{array}{r}
-4 / 3 \\
2 / 3 \\
1 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{r}
-4 \\
4 \\
0 \\
1
\end{array}\right]
$$

Grading: +5 points for $A^{\top},+10$ points the null space basis. Grading for common mistakes: +5 points (total) for Gram-Schmidt.

