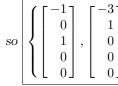
1. [30 points] For the matrix A below, find a basis for the null space of A, a basis for the row space of A, a basis for the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

	F 5 15 5	0 4	Γ1	3	1	0	ך 0
$A = \begin{vmatrix} 4 & 12 & 4 \\ -2 & -6 & -2 \end{vmatrix}$		$\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$	0	0	1	0	
	-2 -6 -2	0 - 2	$R = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0	0	0	1
	-2 -6 -2		Lo	0	0	0	0

Solution: To find a basis for the null space, you need to solve the system of linear equations $A\vec{x} = \vec{0}$, or equivalently $R\vec{x} = \vec{0}$. Parameterizing the solutions to this equation produces

$\lceil x_1 \rceil$	1	$\lceil -3\alpha - \beta \rceil$		$\lceil -3 \rceil$		۲−1 ٦	
x_2		α		1		0	
x_3	=	β	$= \alpha \cdot$	0	$+\beta \cdot$	1	,
x_4		0		0		0	
$\lfloor x_5 \rfloor$							



is a basis for the **null space**. The **nullity** is the number of vectors in this

basis, which is 2.

A basis for the row space can be found by taking the nonzero rows of R:

 $\{[1, 3, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 1]\}$

A basis for the column space can be found by taking the columns of A which have pivots in

them, so $\left\{ \begin{bmatrix} 5\\4\\-2\\-2\end{bmatrix}, \begin{bmatrix} 0\\5\\0\\1\end{bmatrix}, \begin{bmatrix} 4\\-3\\-2\\-5\end{bmatrix} \right\}$ is a basis for the column space.

The rank of A is the number of vectors in a basis for the row space (or column space) of A, so the rank of A is 3.

Grading: +10 points for finding a basis for the null space, +5 points for each of: a basis for the row space, a basis for the column space, the nullity, the rank. Grading for common mistakes: -3 points for forgetting a variable in the parameterization; -3 points for choosing columns of R for the column space of A; -3 points for choosing rows from A for the row space of A; -7 points for choosing the non-pivot columns of A for the null space of A.

2. Let *B* be the (ordered) basis
$$\begin{pmatrix} \begin{bmatrix} -1\\ -1\\ -3 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix}, \begin{bmatrix} -2\\ -3\\ -7 \end{bmatrix} \end{pmatrix}$$
 and *C* the basis $\begin{pmatrix} \begin{bmatrix} -1\\ -3\\ -2 \end{bmatrix}, \begin{bmatrix} -3\\ -8\\ -3 \end{bmatrix}, \begin{bmatrix} 1\\ 3\\ 3 \end{bmatrix} \end{pmatrix}$.
a. [10 points] Find the coordinates of $\begin{bmatrix} -2\\ 0\\ 0 \end{bmatrix}$ with respect to the basis *B*.

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \vec{u} = \begin{bmatrix} -1 & 1 & -2 \\ -1 & 2 & -3 \\ -3 & 5 & -7 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation.

b. [10 points] If the coordinates of \vec{u} with respect to B are $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$, what are the coordinates of \vec{u} with respect to C?

Solution:

$$[\vec{u}]_C = \widetilde{C}^{-1} \cdot \widetilde{B} \cdot [\vec{u}]_B = \begin{bmatrix} -1 & -3 & 1 \\ -3 & -8 & 3 \\ -2 & -3 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -1 & 1 & -2 \\ -1 & 2 & -3 \\ -3 & 5 & -7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -53 \\ 9 \\ -31 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points for $\begin{bmatrix} -27\\19\\25 \end{bmatrix}$ (backwards), +5 points for $CB^{-1}[u] = \begin{bmatrix} -1\\-4\\-7 \end{bmatrix}$, +5 points for $BC^{-1}[u] = \begin{bmatrix} -15\\-20\\-51 \end{bmatrix}$, +5 points for $C^{-1}[u] = \begin{bmatrix} 6\\-1\\4 \end{bmatrix}$, +7 points for finding the change-of-basis matrix.

3.
$$[15 \text{ points}]$$
 Let $\vec{v}_1 = \begin{bmatrix} 5\\0\\1\\2 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 3\\1\\-3\\5 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 24\\3\\-6\\21 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 2\\1\\2\\2 \end{bmatrix}$. Is the vector $\begin{bmatrix} 0\\-2\\2\\-5 \end{bmatrix}$ in the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$? Justify your answer.

Solution: You must determine whether the augmented matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 | \vec{u}]$ is a system that has at least one solution.

Γ5	3	24	$2 \mid$	٢0	_	Γ1	0	3	0	٦1
0	1	3	1 -	-2	L L	0	1	3	0	-1
1	-3	-6	2	2	$\xrightarrow[RREF]{}$	0	0	0	1	-1
$\lfloor 2$	5	21	2 -	-5		Lo	0	0	0	0

Since this system has infinitely many solutions, it has at least one, and so the vector is in the span.

Grading: +4 points for setting up the matrix, +4 points for the RREF, +3 points for determining how many solutions there were, +4 points for answering YES/NO. Grading for common mistakes: -8 points for using $\vec{0}$ instead of \vec{u} .

4. [15 points] Find a basis for the subspace spanned by
$$\left\{ \begin{bmatrix} 1\\3\\-4\\3 \end{bmatrix}, \begin{bmatrix} -4\\2\\3\\1 \end{bmatrix}, \begin{bmatrix} -2\\3\\-4\\3 \end{bmatrix}, \begin{bmatrix} -18\\20\\-4\\16 \end{bmatrix}, \begin{bmatrix} 15\\-11\\-8\\-7 \end{bmatrix} \right\}, \text{ and}$$

the dimension of that subspace.

Solution: To find this basis, use the column space (CS) approach: Glue the vectors together to get the matrix \tilde{V} , find the RREF, and take the original vectors that have pivots in their columns:

$$\widetilde{V} = \begin{bmatrix} 1 & -4 & -2 & -18 & 15 \\ 3 & 2 & 3 & 20 & -11 \\ -4 & 3 & -4 & -4 & -8 \\ 3 & 1 & 3 & 16 & -7 \end{bmatrix} \xrightarrow[RREF]{} \begin{bmatrix} 1 & 0 & 0 & 2 & -17 \\ 0 & 1 & 0 & 4 & -4 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, $\left\{ \begin{array}{c} 1\\ 3\\ -4\\ \end{array} \right\}$

 $\left| \begin{array}{c} 2\\ 3\\ 1\\ 1 \end{array} \right|, \left| \begin{array}{c} 2\\ 3\\ -4\\ 3 \end{array} \right| \right\} is a basis for this subspace. Its dimension is the number of$

vectors in the basis, which is 3.

- 5. The eigenvalues of the matrix $A = \begin{bmatrix} 1 & -2 & -4 \\ 8 & 11 & 16 \\ -2 & -2 & -1 \end{bmatrix}$ are 3 (with multiplicity 2) and 5 (with multiplicity 1). (You do not need to find these.) Do the following for the matrix A:
 - a. [10 points] Find a basis for the eigenspace of each eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the null space of $A - \lambda I$. So, if $\lambda = 3$,

$$A - \lambda I = \begin{bmatrix} -2 & -2 & -4 \\ 8 & 8 & 16 \\ -2 & -2 & -4 \end{bmatrix} \xrightarrow[RREF]{} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

This is parameterized by

$$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha - 2\beta\\ \alpha\\ \beta \end{bmatrix} = \alpha \cdot \begin{bmatrix} -2\\ 0\\ 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$$
Thus, $\boxed{\left\{ \begin{bmatrix} -2\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} \right\}}$ is a basis for the eigenspace of $\lambda = 3$.
If $\lambda = 5$,
 $A - \lambda I = \begin{bmatrix} -4 - 2 - 4\\ 8 & 6 & 16\\ -2 & -2 & -6 \end{bmatrix} \xrightarrow{\blacksquare} \begin{bmatrix} 1 & 0 - 1\\ 0 & 1 & 4\\ 0 & 0 & 0 \end{bmatrix}$,
and $\boxed{\left\{ \begin{bmatrix} -1\\ -4\\ 1 \end{bmatrix} \right\}}$ is a basis for the eigenspace of $\lambda = 5$.

Grading: +3 points for $A - \lambda I$, +3 points for the RREF, +4 points for finding the null space basis.

b. [10 points] Is the matrix A diagonalizable? If so, find matrices D and P such that $A = PDP^{-1}$ and D is a diagonal matrix. If A is not diagonalizable explain carefully why it is not.

Solution: YES. The dimension of each eigenspace equals the (given) multiplicity of each eigenvalue. One pair of matrices that diagonalizes A is

D =	0	3		and	P =	-	1 -	-4	
	0	0	5			1	0	1	

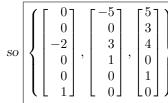
Grading: +3 points for yes/no, +7 points for the explanation. Full credit — $+10^*$ points — was given for an answer consistent with any mistakes made in part (a).

1. [30 points] For the matrix A below, find a basis for the null space of A, a basis for the row space of A, a basis for the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

$A = \begin{bmatrix} 2\\5 \end{bmatrix}$	Γ0	3 -	3	9	3	-67			Γ1	0	0	5 -	-5	ך 0	
	3	2	4 -	-27	4		D	0	1	0	0 -	-3	0		
	5	5	5	10 -	-60	10	R =	0	0	1	-3 -	$^{-4}$	2		
	0							Lo	0	0	0	0	0		

Solution: To find a basis for the null space, you need to solve the system of linear equations $A\vec{x} = \vec{0}$, or equivalently $R\vec{x} = \vec{0}$. Parameterizing the solutions to this equation produces

$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix} =$	$\begin{bmatrix} -5\alpha + 5\beta \\ 3\beta \\ 3\alpha + 4\beta - 2\gamma \\ \alpha \\ \beta \\ \gamma \end{bmatrix}$	$= \alpha \cdot$	$\begin{bmatrix} -5\\0\\3\\1\\0\\0 \end{bmatrix}$	$+ \beta \cdot$	$\begin{bmatrix} 5 \\ 3 \\ 4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	$+ \gamma \cdot$	$\begin{bmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$,
---	--	------------------	---	-----------------	--	------------------	---	---



is a basis for the null space. The nullity is the number of vectors in

this basis, which is 3.

 $\mathbf{3}$

 $\mathbf{5}$

Lo.

5

2

5

3

A basis for the row space can be found by taking the nonzero rows of R:

 $\left[1,\ 0,\ 0,\ 5,\ -5,\ 0\right], \left[0,\ 1,\ 0,\ 0,\ -3,\ 0\right], \left[0,\ 0,\ 1,\ -3,\ -4,\ 2\right]$

A basis for the column space can be found by taking the columns of A which have pivots in

them, so $\left\{ \begin{array}{c} \\ \end{array} \right\}$

is a basis for the column space.

The rank of A is the number of vectors in a basis for the row space (or column space) of A, so the rank of A is $\boxed{3}$.

Grading: +10 points for finding a basis for the null space, +5 points for each of: a basis for the row space, a basis for the column space, the nullity, the rank. Grading for common mistakes: -3 points for forgetting a variable in the parameterization; -3 points for choosing columns of R for the column space of A; -3 points for choosing rows from A for the row space of A; -7 points for choosing the non-pivot columns of A for the null space of A.

2. Let *B* be the (ordered) basis
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{bmatrix} -2\\-1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-2 \end{bmatrix} \end{pmatrix}$$
 and *C* the basis $\begin{pmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-2\\6 \end{bmatrix}, \begin{bmatrix} 1\\-4\\1 \end{bmatrix} \end{pmatrix}$.
a. [10 points] Find the coordinates of $\begin{bmatrix} 14\\-50\\16 \end{bmatrix}$ with respect to the basis *C*.

Solution:

$$[\vec{u}]_C = \tilde{C}^{-1} \cdot \vec{u} = \begin{bmatrix} 1 & 3 & 1 \\ -1 & -2 & -4 \\ 2 & 6 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 14 \\ -50 \\ 16 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 12 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation.

b. [10 points] If the coordinates of \vec{u} with respect to C are $\begin{bmatrix} 2\\4\\2 \end{bmatrix}$, what are the coordinates of \vec{u} with respect to B?

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \widetilde{C} \cdot [\vec{u}]_C = \begin{bmatrix} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 0 & -1 & -2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 3 & 1 \\ -1 & -2 & -4 \\ 2 & 6 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 100 \\ 66 \\ -48 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points for $\begin{bmatrix} 114\\-38\\-8 \end{bmatrix}$ (backwards), +5 points for $BC^{-1}[u] = \begin{bmatrix} -62\\-14\\-16 \end{bmatrix}$, +5 points for $CB^{-1}[u] = \begin{bmatrix} -62\\-14\\-16 \end{bmatrix}$, +5 points for $B^{-1}[u]$, +7 points for finding the change-of-basis matrix.

3. [15 points] Let
$$\vec{v}_1 = \begin{bmatrix} 2\\0\\1\\-3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 5\\4\\-3\\0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -3\\4\\-7\\12 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 5\\4\\2\\-1 \end{bmatrix}$. Is the vector $\begin{bmatrix} 3\\8\\4\\-20 \end{bmatrix}$ in the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$? Justify your answer.

Solution: You must determine whether the augmented matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 | \vec{u}]$ is a system that has at least one solution.

Г	2	5	-3	5	3]	_	Γ1	0	-4	0	ך 0
	0	4	4	4	8	Le la	0	1	1	0	0
	1	-3	-7	2	4	RREF	0	0	0	1	0
L-	-3	0	12	-1	$-20 \rfloor$	$\xrightarrow[RREF]{RREF}$	LΟ	0	0	0	$1 \rfloor$

Since this system has no solutions, the vector is not in the span.

Grading: +4 points for setting up the matrix, +4 points for the RREF, +3 points for determining how many solutions there were, +4 points for answering YES/NO. Grading for common mistakes: -8 points for using $\vec{0}$ instead of \vec{u} .

4. [15 points] Find a basis for the subspace spanned by $\left\{ \begin{bmatrix} 1\\-1\\-2\\1 \end{bmatrix}, \begin{bmatrix} -3\\3\\6\\-3 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-4\\2 \end{bmatrix}, \begin{bmatrix} -1\\3\\-1\\-1 \end{bmatrix}, \begin{bmatrix} -4\\0\\-3\\0 \end{bmatrix} \right\}$

the dimension of that subspace.

Solution: To find this basis, use the column space (CS) approach: Glue the vectors together to get the matrix \tilde{V} , find the RREF, and take the original vectors that have pivots in their columns:

$$\widetilde{V} = \begin{bmatrix} 1 & -3 & 2 & -1 & -4 \\ -1 & 3 & -2 & 3 & 0 \\ -2 & 6 & -4 & -1 & -3 \\ 1 & -3 & 2 & -1 & 0 \end{bmatrix} \xrightarrow{\blacksquare} \overline{RREF} \begin{bmatrix} 1 & -3 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, $\left| \begin{cases} 1 \\ -1 \\ -2 \end{cases} \right|$

 $\begin{bmatrix} 1\\-1\\-2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\-1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} -4\\0\\-3\\0 \end{bmatrix} \right\}$ is a basis for this subspace. Its dimension is the number of

and

vectors in the basis, which is 3.

- 5. The eigenvalues of the matrix $A = \begin{bmatrix} 3 & 30 & 60 \\ 0 & -15 & -36 \\ 0 & 6 & 15 \end{bmatrix}$ are 3 (with multiplicity 2) and -3 (with multiplicity 1). (You do not need to find these.) Do the following for the matrix A:
 - a. [10 points] Find a basis for the eigenspace of **each** eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the null space of $A - \lambda I$. So, if $\lambda = 3$,

$$A - \lambda I = \begin{bmatrix} 0 & 30 & 60\\ 0 & -18 & -36\\ 0 & 6 & 12 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 0 & 1 & 2\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}.$$

This is parameterized by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ -2\beta \\ \beta \end{bmatrix} = \alpha \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$

Thus, $\boxed{\left\{ \begin{bmatrix} 0\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}}$ is a basis for the eigenspace of $\lambda = 3$. If $\lambda = -3$, $A - \lambda I = \begin{bmatrix} 6 & 30 & 60\\0 & -12 & -36\\0 & 6 & 18 \end{bmatrix} \xrightarrow[]{RREF} \begin{bmatrix} 1 & 0 & -5\\0 & 1 & 3\\0 & 0 & 0 \end{bmatrix},$ and $\boxed{\left\{ \begin{bmatrix} 5\\-3\\1 \end{bmatrix} \right\}}$ is a basis for the eigenspace of $\lambda = -3$.

Grading: +3 points for $A - \lambda I$, +3 points for the RREF, +4 points for finding the null space basis.

b. [10 points] Is the matrix A diagonalizable? If so, find matrices D and P such that $A = PDP^{-1}$ and D is a diagonal matrix. If A is not diagonalizable explain carefully why it is not.

Solution: YES. The dimension of each eigenspace equals the (given) multiplicity of each eigenvalue. One pair of matrices that diagonalizes A is

$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad \text{and} \qquad$	$P = \begin{bmatrix} 0 & 1 & 5 \\ -2 & 0 & -3 \\ 1 & 0 & 1 \end{bmatrix}.$
---	--

Grading: +3 points for yes/no, +7 points for the explanation. Full credit — $+10^*$ points — was given for an answer consistent with any mistakes made in part (a).

1. [30 points] For the matrix A below, find a basis for the null space of A, a basis for the row space of A, a basis for the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

Solution: To find a basis for the null space, you need to solve the system of linear equations $A\vec{x} = \vec{0}$, or equivalently $R\vec{x} = \vec{0}$. Parameterizing the solutions to this equation produces

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha \\ \alpha \\ 0 \end{bmatrix} = \alpha \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix},$$

so $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$ is a basis for the null space. The nullity is the number of vectors in this basis,

which is 1.

A basis for the row space can be found by taking the nonzero rows of R:

$$\[[1, 1, 0], [0, 0, 1]]\]$$

A basis for the **column space** can be found by taking the columns of A which have pivots in

them, so $\left\{ \begin{bmatrix} -4\\5\\2\\2\\2\end{bmatrix}, \begin{bmatrix} 4\\-1\\-5\\-1\end{bmatrix} \right\}$ is a basis for the column space.

The rank of A is the number of vectors in a basis for the row space (or column space) of A, so the rank of A is 2.

Grading: +10 points for finding a basis for the null space, +5 points for each of: a basis for the row space, a basis for the column space, the nullity, the rank. Grading for common mistakes: -3 points for forgetting a variable in the parameterization; -3 points for choosing columns of R for the column space of A; -3 points for choosing rows from A for the row space of A; -7 points for choosing the non-pivot columns of A for the null space of A.

2. Let *B* be the (ordered) basis
$$\begin{pmatrix} 1 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 9 \\ 5 \end{bmatrix} \end{pmatrix}$$
 and *C* the basis $\begin{pmatrix} 1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 7 \\ -6 \end{bmatrix}, \begin{bmatrix} -3 \\ -8 \\ 8 \end{bmatrix} \end{pmatrix}$.
a. [10 points] Find the coordinates of $\begin{bmatrix} -2 \\ 8 \\ 2 \end{bmatrix}$ with respect to the basis *B*.

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \vec{u} = \begin{bmatrix} 1 & 0 & -2 \\ -3 & -1 & 9 \\ 0 & -2 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -2 \\ 8 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation.

b. [10 points] If the coordinates of \vec{u} with respect to C are $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$, what are the coordinates of \vec{u} with respect to B?

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \widetilde{C} \cdot [\vec{u}]_C = \begin{bmatrix} 1 & 0 & -2 \\ -3 & -1 & 9 \\ 0 & -2 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 2 & -3 \\ 3 & 7 & -8 \\ -3 & -6 & 8 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -98 \\ -122 \\ -47 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points for $\begin{bmatrix} -59\\33\\4 \end{bmatrix}$ (backwards), +5 points for $CB^{-1}[u] = \begin{bmatrix} 26\\101\\-85 \end{bmatrix}$, +5 points for $BC^{-1}[u] = \begin{bmatrix} -15\\22\\-40 \end{bmatrix}$, +5 points for $B^{-1}[u]$, +7 points for finding the change-of-basis matrix.

3. [15 points] Let
$$\vec{v}_1 = \begin{bmatrix} 2\\-1\\4\\-3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 2\\1\\-5\\3 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -3\\4\\2\\1 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} -21\\5\\2\\4 \end{bmatrix}$. Is the vector $\begin{bmatrix} -22\\10\\-11\\3 \end{bmatrix}$ in the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$? Justify your answer.

Solution: You must determine whether the augmented matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 | \vec{u}]$ is a system that has at least one solution.

Γ2	2	-3	-21	-22]	_	Γ1	0	0	$-5 \mid 0 \rceil$
-1	1	4	5	10	l III (0	1	0	-4 0
4	-5	2	2	-11	RREF	0	0	1	$1 \mid 0 \mid$
$\begin{bmatrix} 1\\ -3 \end{bmatrix}$	3	1	4	$3 \rfloor$	$\xrightarrow[RREF]{RREF}$	LΟ	0	0	$0 \mid 1$

Since this system has no solutions, the vector is not in the span.

Grading: +4 points for setting up the matrix, +4 points for the RREF, +3 points for determining how many solutions there were, +4 points for answering YES/NO. Grading for common mistakes: -8 points for using $\vec{0}$ instead of \vec{u} .

4. [15 points] Find a basis for the subspace spanned by $\begin{cases} \begin{bmatrix} 3\\4\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}, \begin{bmatrix} -3\\1\\-3\\-3 \end{bmatrix}, \begin{bmatrix} 12\\3\\9\\18 \end{bmatrix}, \begin{bmatrix} -4\\-4\\1\\3 \end{bmatrix}$

dimension of that subspace.

Solution: To find this basis, use the column space (CS) approach: Glue the vectors together to get the matrix \tilde{V} , find the RREF, and take the original vectors that have pivots in their columns:

$$\widetilde{V} = \begin{bmatrix} 3 & 1 & -3 & 12 & -4 \\ 4 & 2 & 173 & -4 \\ 3 & 0 & -3 & 9 & 1 \\ 1 & 3 & -3 & 18 & 3 \end{bmatrix} \xrightarrow{\blacksquare} RREF \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Thus, $\left| \begin{cases} \begin{bmatrix} 3 \\ 4 \\ 3 \\ 1 \end{bmatrix} \right|$

 $\begin{bmatrix} 2\\2\\0\\3 \end{bmatrix}, \begin{bmatrix} -3\\-3\\-3 \end{bmatrix}, \begin{bmatrix} -4\\1\\3 \end{bmatrix} \end{bmatrix}$ is a basis for this subspace. Its dimension is the number

and the

of vectors in the basis, which is |4.|

5. The eigenvalues of the matrix $A = \begin{bmatrix} 1 & -6 & -6 \\ -1 & -2 & -3 \\ 1 & 5 & 6 \end{bmatrix}$ are 1 (with multiplicity 2) and 3 (with multiplicity 1). (You do not need to find these.) Do the following for the matrix A:

a. [10 points] Find a basis for the eigenspace of **each** eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the null space of $A - \lambda I$. So, if $\lambda = 1$,

$$A - \lambda I = \begin{bmatrix} 0 & -6 & -6 \\ -1 & -3 & -3 \\ 1 & 5 & 5 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

This is parameterized by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -\alpha \\ \alpha \end{bmatrix} = \alpha \cdot \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Thus, $\left| \left\{ \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} \right\} \right|$ is a basis for the eigenspace of $\lambda = 1$. If $\lambda = 3$, $A - \lambda I = \begin{bmatrix} -2 & -6 & -6\\ -1 & -5 & -3\\ 1 & 5 & 3 \end{bmatrix} \xrightarrow[]{RREF} \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}$, and $\left\{ \begin{bmatrix} -3\\ 0\\ 1 \end{bmatrix} \right\}$ is a basis for the eigenspace of $\lambda = 3$.

Grading: +3 points for $A - \lambda I$, +3 points for the RREF, +4 points for finding the null space basis.

b. [10 points] Is the matrix A diagonalizable? If so, find matrices D and P such that $A = PDP^{-1}$ and D is a diagonal matrix. If A is not diagonalizable explain carefully why it is not.

Solution: NO. The dimension of the eigenspace of $\lambda = 1$ is less than its multiplicity (1 < 2). You could also have said that the matrix $P = \begin{bmatrix} 0 & -3 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}$ doesn't end up being square.

Grading: +3 points for yes/no, +7 points for the explanation. Full credit — $+10^*$ points — was given for an answer consistent with any mistakes made in part (a).

1. [30 points] For the matrix A below, find a basis for the null space of A, a basis for the row space of A, a basis for the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

$$A = \begin{bmatrix} -3 & 15 & -1 & 11 \\ 3 & -15 & -5 & -35 \\ -2 & 10 & 1 & 14 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & -5 & 0 & -5 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: To find a basis for the null space, you need to solve the system of linear equations $A\vec{x} = \vec{0}$, or equivalently $R\vec{x} = \vec{0}$. Parameterizing the solutions to this equation produces

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} 5\alpha + 5\beta\\\alpha\\-4\beta\\\beta \end{bmatrix} = \alpha \cdot \begin{bmatrix} 5\\1\\0\\0 \end{bmatrix} + \beta \cdot \begin{bmatrix} 5\\0\\-4\\1 \end{bmatrix},$$

so $\left\{ \begin{bmatrix} 5\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\0\\-4\\1 \end{bmatrix} \right\}$

is a basis for the null space. The nullity is the number of vectors in this

basis, which is 2.

A basis for the row space can be found by taking the nonzero rows of R:

 $\{[1, -5, 0, -5], [0, 0, 1, 4]\}$

A basis for the **column space** can be found by taking the columns of A which have pivots in them, so $\left\{ \begin{bmatrix} -3\\3\\-2 \end{bmatrix}, \begin{bmatrix} -1\\-5\\1 \end{bmatrix} \right\}$ is a basis for the column space.

The rank of A is the number of vectors in a basis for the row space (or column space) of A, so the rank of A is 2.

Grading: +10 points for finding a basis for the null space, +5 points for each of: a basis for the row space, a basis for the column space, the nullity, the rank. Grading for common mistakes: -3 points for forgetting a variable in the parameterization; -3 points for choosing columns of R for the column space of A; -3 points for choosing rows from A for the row space of A; -7 points for choosing the non-pivot columns of A for the null space of A.

2. Let *B* be the (ordered) basis
$$\begin{pmatrix} \begin{bmatrix} -1\\-2\\1 \end{bmatrix}, \begin{bmatrix} -3\\-5\\6 \end{bmatrix}, \begin{bmatrix} 1\\1\\-5 \end{bmatrix} \end{pmatrix}$$
 and *C* the basis $\begin{pmatrix} \begin{bmatrix} 1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-4\\-3 \end{bmatrix}, \begin{bmatrix} 1\\-3\\0 \end{bmatrix} \end{pmatrix}$.
a. [10 points] Find the coordinates of $\begin{bmatrix} -12\\-22\\16 \end{bmatrix}$ with respect to the basis *B*.

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \vec{u} = \begin{bmatrix} -1 & -3 & 1 \\ -2 & -5 & 1 \\ 1 & 6 & -5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -12 \\ -22 \\ 16 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation.

b. [10 points] If the coordinates of \vec{u} with respect to B are $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, what are the coordinates of \vec{u} with respect to C?

Solution:

$$[\vec{u}]_C = \widetilde{C}^{-1} \cdot \widetilde{B} \cdot [\vec{u}]_B = \begin{bmatrix} 1 & 3 & 1 \\ -1 & -4 & -3 \\ -1 & -3 & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -1 & -3 & 1 \\ -2 & -5 & 1 \\ 1 & 6 & -5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -73 \\ 25 \\ -6 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points for $\begin{bmatrix} 338\\-155\\-117 \end{bmatrix}$ (backwards), +5 points for $CB^{-1}[u] = \begin{bmatrix} -9\\21\\5 \end{bmatrix}$, +5 points for $BC^{-1}[u] = \begin{bmatrix} 7\\-1\\-56 \end{bmatrix}$, +5 points for $C^{-1}[u] = \begin{bmatrix} 30\\-11\\4 \end{bmatrix}$, +7 points for finding the change-of-basis matrix.

3. [15 points] Let
$$\vec{v}_1 = \begin{bmatrix} -4\\ 3\\ 1\\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -12\\ 9\\ 3\\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 4\\ 2\\ -1\\ 0 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 2\\ 3\\ -3\\ -1 \end{bmatrix}$. Is the vector $\begin{bmatrix} 10\\ -7\\ 0\\ 1 \end{bmatrix}$ in the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$? Justify your answer.

Solution: You must determine whether the augmented matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 | \vec{u}]$ is a system that has at least one solution.

Γ-	-4	-12	4	$2 \mid$	ך 10	_	Γ1	3	0	0 -	-2 J
	3	9	2	3	-7	l III (0	0	1	0	1
	1	3	-1	-3	0	RREF	0	0	0	1	-1
L	0	0	0	-1	1	$\xrightarrow[RREF]{}$	LΟ	0	0	0	0

Since this system has infinitely many solutions, it has at least one, and so the vector is in the span.

Grading: +4 points for setting up the matrix, +4 points for the RREF, +3 points for determining how many solutions there were, +4 points for answering YES/NO. Grading for common mistakes: -8 points for using $\vec{0}$ instead of \vec{u} .

4. [15 points] Find a basis for the subspace spanned by $\left\{ \begin{bmatrix} 1\\3\\4\\1 \end{bmatrix}, \begin{bmatrix} -3\\-9\\-12\\-3 \end{bmatrix}, \begin{bmatrix} 3\\1\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\-4\\-1\\0 \end{bmatrix}, \begin{bmatrix} 4\\0\\3\\0 \end{bmatrix} \right\}, \text{ and the}$

dimension of that subspace.

Solution: To find this basis, use the column space (CS) approach: Glue the vectors together to get the matrix V, find the RREF, and take the original vectors that have pivots in their columns:

$$\widetilde{V} = \begin{bmatrix} 1 & -3 & 3 & 2 & 4 \\ 3 & -9 & 1 & -4 & 0 \\ 4 & -12 & -3 & -1 & 3 \\ 1 & -3 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\blacksquare} \overrightarrow{RREF} \begin{bmatrix} 1 & -3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 2\\ -4\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 4\\ 0\\ 3\\ 0 \end{bmatrix}$ is a basis for this subspace. Its dimension is the number $\frac{3}{4}$ $\begin{vmatrix} 1 \\ -3 \end{vmatrix}$, Thus,

of vectors in the basis, which is 4.

5. The eigenvalues of the matrix $A = \begin{bmatrix} -1 & 4 & 16 \\ 0 & 4 & 20 \\ 0 & -1 & -5 \end{bmatrix}$ are -1 (with multiplicity 2) and 0 (with multiplicity 1). (You do not need to find these.) Do the following for the matrix A:

a. [10 points] Find a basis for the eigenspace of each eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the null space of $A - \lambda I$. So, if $\lambda = -1$,

$$A - \lambda I = \begin{bmatrix} 0 & 4 & 16 \\ 0 & 5 & 20 \\ 0 & -1 & -4 \end{bmatrix} \xrightarrow[RREF]{} \begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

This is parameterized by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ -4\beta \\ \beta \end{bmatrix} = \alpha \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 \\ -4 \\ 1 \end{bmatrix}$$

Thus, $\boxed{\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-4\\1 \end{bmatrix} \right\}} \text{ is a basis for the eigenspace of } \lambda = -1.$ If $\lambda = 0$, $A - \lambda I = \begin{bmatrix} -1 & 4 & 16\\0 & 4 & 20\\0 & -1 & -5 \end{bmatrix} \xrightarrow[]{\text{REF}} \begin{bmatrix} 1 & 0 & 4\\0 & 1 & 5\\0 & 0 & 0 \end{bmatrix},$ and $\boxed{\left\{ \begin{bmatrix} -4\\-5\\1 \end{bmatrix} \right\}} \text{ is a basis for the eigenspace of } \lambda = 0.$

Grading: +3 points for $A - \lambda I$, +3 points for the RREF, +4 points for finding the null space basis.

b. [10 points] Is the matrix A diagonalizable? If so, find matrices D and P such that $A = PDP^{-1}$ and D is a diagonal matrix. If A is not diagonalizable explain carefully why it is not.

Solution: YES. The dimension of each eigenspace equals the (given) multiplicity of each eigenvalue. One pair of matrices that diagonalizes A is

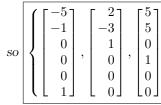
Grading: +3 points for yes/no, +7 points for the explanation. Full credit — $+10^*$ points — was given for an answer consistent with any mistakes made in part (a).

1. [30 points] For the matrix A below, find a basis for the null space of A, a basis for the row space of A, a basis for the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

	$\begin{bmatrix} 5 & -4 & -22 & -5 & 2 & 21 \end{bmatrix}$	Г	1	0 ·	-2 -5	5	0	ך 5	
$A = \begin{bmatrix} 2\\ 5 \end{bmatrix}$	2 - 4 - 16 10 - 3 6	R =	0	1	3 - 5	5	0	1	
	$\begin{bmatrix} 2 & -4 & -16 & 10 & -3 & 6 \\ 5 & 1 & -7 & -30 & 3 & 26 \end{bmatrix}$		0	0	0 ()	1	0	
	$\begin{bmatrix} 3 & -5 & -21 & 10 & -5 & 10 \end{bmatrix}$	L	0	0	0 ()	0	0	

Solution: To find a basis for the null space, you need to solve the system of linear equations $A\vec{x} = \vec{0}$, or equivalently $R\vec{x} = \vec{0}$. Parameterizing the solutions to this equation produces

$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$	=	$\begin{bmatrix} 2\alpha + 5\beta - 5\gamma \\ -3\alpha + 5\beta - \gamma \\ \alpha \\ \beta \\ 0 \\ \gamma \end{bmatrix}$	$= \alpha \cdot$	$\begin{bmatrix} 2\\ -3\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}$	$+\beta$.	$\begin{bmatrix} 5 \\ 5 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	$\left + \gamma \cdot \right $	$\begin{bmatrix} -5\\ -1\\ 0\\ 0\\ 0\\ 1 \end{bmatrix}$	
--	---	--	------------------	--	------------	--	---------------------------------	---	--



is a basis for the null space. The nullity is the number of vectors in

this basis, which is 3.

-4

1 -5_

5

-3

3

-5_

A basis for the row space can be found by taking the nonzero rows of R:

 $\{[\,1,\ 0,\ -2,\ -5,\ 0,\ 5\,]\,,[\,0,\ 1,\ 3,\ -5,\ 0,\ 1\,]\,,[\,0,\ 0,\ 0,\ 0,\ 1,\ 0\,]\}$

A basis for the column space can be found by taking the columns of A which have pivots in

them, so {

is a basis for the column space.

The rank of A is the number of vectors in a basis for the row space (or column space) of A, so the rank of A is $\boxed{3}$.

Grading: +10 points for finding a basis for the null space, +5 points for each of: a basis for the row space, a basis for the column space, the nullity, the rank. Grading for common mistakes: -3 points for forgetting a variable in the parameterization; -3 points for choosing columns of R for the column space of A; -3 points for choosing rows from A for the row space of A; -7 points for choosing the non-pivot columns of A for the null space of A.

2. Let *B* be the (ordered) basis
$$\begin{pmatrix} \begin{bmatrix} -1\\1\\-2 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\-2 \end{bmatrix} \end{pmatrix}$$
 and *C* the basis $\begin{pmatrix} \begin{bmatrix} 1\\-3\\1 \end{bmatrix}, \begin{bmatrix} -2\\7\\1 \end{bmatrix}, \begin{bmatrix} 2\\-4\\7 \end{bmatrix} \end{pmatrix}$.
a. [10 points] Find the coordinates of $\begin{bmatrix} -4\\6\\-4 \end{bmatrix}$ with respect to the basis *B*.

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \vec{u} = \begin{bmatrix} -1 & 1 & -2 \\ -1 & 2 & -3 \\ -3 & 5 & -7 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -4 \\ 6 \\ -4 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation.

b. [10 points] If the coordinates of \vec{u} with respect to B are $\begin{bmatrix} 2\\4\\2 \end{bmatrix}$, what are the coordinates of \vec{u} with respect to C?

Solution:

$$[\vec{u}]_C = \widetilde{C}^{-1} \cdot \widetilde{B} \cdot [\vec{u}]_B = \begin{bmatrix} 1 & -2 & 2 \\ -3 & 7 & -4 \\ 1 & 1 & 7 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -1 & -1 & 1 \\ 1 & 2 & -2 \\ -2 & 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 92 \\ 30 \\ -18 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points for $\begin{bmatrix} -10\\24\\12 \end{bmatrix}$ (backwards), +5 points for $CB^{-1}[u] = \begin{bmatrix} -20\\126\\158 \end{bmatrix}$, +5 points for $BC^{-1}[u] = \begin{bmatrix} 238\\-318\\206 \end{bmatrix}$, +5 points for $C^{-1}[u] = \begin{bmatrix} 6\\-1\\4 \end{bmatrix}$, +7 points for finding the change-of-basis matrix.

3. [15 points] Let
$$\vec{v}_1 = \begin{bmatrix} -4\\2\\5\\-1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 3\\-4\\2\\-3 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -3\\5\\-1\\-1 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 2\\-8\\7\\1 \end{bmatrix}$. Is the vector $\begin{bmatrix} -11\\-14\\6\\1 \end{bmatrix}$ in the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$? Justify your answer.

Solution: You must determine whether the augmented matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 | \vec{u}]$ is a system that has at least one solution.

$\Gamma - 4$	3	-3	2	-11 J	_	Γ1	0	0	$1 \mid 0$	٦
2	-4	5	-8	-14	L L	0	1	0	0 0	
5	2	-1	7	6	$\xrightarrow[RREF]{}$	0	0	1	$-2 \mid 0$	
$\lfloor -1$	-3	-1	1	1		LΟ	0	0	0 1	

Since this system has no solutions, it has at least one, and so the vector is not in the span.

Grading: +4 points for setting up the matrix, +4 points for the \overrightarrow{RREF} , +3 points for determining how many solutions there were, +4 points for answering YES/NO. Grading for common mistakes: -8 points for using $\vec{0}$ instead of \vec{u} .

4. [15 points] Find a basis for the subspace spanned by
$$\left\{ \begin{bmatrix} 0\\-3\\1\\-1 \end{bmatrix}, \begin{bmatrix} -3\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 9\\-12\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\-3\\4\\-2 \end{bmatrix}, \begin{bmatrix} 3\\1\\0\\2 \end{bmatrix} \right\}, \text{ and}$$

the dimension of that subspace.

Solution: To find this basis, use the column space (CS) approach: Glue the vectors together to get the matrix \tilde{V} , find the RREF, and take the original vectors that have pivots in their columns:

$$\widetilde{V} = \begin{bmatrix} 0 & -3 & 9 & -2 & 3 \\ -3 & 1 & -12 & -3 & 1 \\ 1 & 1 & 0 & 4 & 0 \\ -1 & -1 & 0 & -2 & 2 \end{bmatrix} \xrightarrow{\blacksquare} \overrightarrow{RREF} \begin{bmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Thus, $\left| \left\{ \begin{bmatrix} 0\\ -3\\ 1\\ -1 \end{bmatrix} \right| \right|$

is a basis for this subspace. Its dimension is the number

of vectors in the basis, which is 4.

1

1 -1 $\begin{bmatrix} -3 \\ 4 \end{bmatrix}$

 $\begin{array}{c} 1 \\ 0 \end{array}$

5. The eigenvalues of the matrix $A = \begin{bmatrix} -5 & -8 & -16 \\ -2 & -15 & -20 \\ 1 & 9 & 13 \end{bmatrix}$ are -5 (with multiplicity 2) and 3 (with multiplicity 1). (You do not need to find these.) Do the following for the matrix A:

a. [10 points] Find a basis for the eigenspace of **each** eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the null space of $A - \lambda I$. So, if $\lambda = -5$,

$$A - \lambda I = \begin{bmatrix} 0 & -8 & -16 \\ -2 & -10 & -20 \\ 1 & 9 & 18 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

This is parameterized by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2\alpha \\ \alpha \end{bmatrix} = \alpha \cdot \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$

Thus, $\left| \left\{ \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \right\} \right|$ is a basis for the eigenspace of $\lambda = -5$. If $\lambda = 3$, $A - \lambda I = \begin{bmatrix} -8 & -8 & -16\\-2 & -18 & -20\\1 & 9 & 10 \end{bmatrix} \xrightarrow[RREF]{} \begin{bmatrix} 1 & 0 & 1\\0 & 1 & 1\\0 & 0 & 0 \end{bmatrix}$, and $\left[\left\{ \begin{bmatrix} -1\\-1\\1 \end{bmatrix} \right\} \right]$ is a basis for the eigenspace of $\lambda = 3$.

Grading: +3 points for $A - \lambda I$, +3 points for the RREF, +4 points for finding the null space basis.

b. [10 points] Is the matrix A diagonalizable? If so, find matrices D and P such that $A = PDP^{-1}$ and D is a diagonal matrix. If A is not diagonalizable explain carefully why it is not.

Solution: NO. The dimension of the eigenspace of
$$\lambda = -5$$
 is less than its multiplicity $(1 < 2)$.
You could also have said that the matrix $P = \begin{bmatrix} 0 & -1 \\ -2 & -1 \\ 1 & 1 \end{bmatrix}$ doesn't end up being square.
Grading: +3 points for yes/no, +7 points for the explanation. Full credit — +10^{*} points

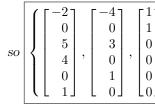
was given for an answer consistent with any mistakes made in part (a).

1. [30 points] For the matrix A below, find a basis for the null space of A, a basis for the row space of A, a basis for the column space of A, the rank of A, and the nullity of A. The reduced row echelon form of A is the matrix R given below.

	$\begin{bmatrix} 2 & -2 & -2 \end{bmatrix}$	-1	14	ך 18		Г	1 -	-1	0	0	4	ך 2
	-4 4 -1	1	-13	-7	р		0	0	1	0 -	-3	$ \begin{array}{c} -5 \\ -4 \end{array} $
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4	25	7	R	=	0	0	0	1	0	-4
	4 - 4 - 3											0

Solution: To find a basis for the null space, you need to solve the system of linear equations $A\vec{x} = \vec{0}$, or equivalently $R\vec{x} = \vec{0}$. Parameterizing the solutions to this equation produces

$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} =$	$\begin{bmatrix} \alpha - 4\beta - 2\gamma \\ \alpha \\ 3\beta + 5\gamma \\ 4\gamma \\ \beta \\ \gamma \end{bmatrix}$	$= \alpha \cdot$	$\begin{bmatrix} 1\\1\\0\\0\\0\\0\end{bmatrix}$	$+\beta$ ·	$\begin{bmatrix} -4\\0\\3\\0\\1\\0\end{bmatrix}$	$+\gamma$.	$\begin{bmatrix} -2 \\ 0 \\ 5 \\ 4 \\ 0 \\ 1 \end{bmatrix}$,
--	---	------------------	---	------------	--	-------------	---	---



is a basis for the null space. The nullity is the number of vectors in

this basis, which is 3.

A basis for the row space can be found by taking the nonzero rows of R:

 $\{[1, -1, 0, 0, 4, 2], [0, 0, 1, 0, -3, -5], [0, 0, 0, 1, 0, -4]\}$

A basis for the column space can be found by taking the columns of A which have pivots in

them, so $\left\{ \begin{bmatrix} 2\\-4\\4\\4 \end{bmatrix}, \begin{bmatrix} -2\\-1\\-3\\-3 \end{bmatrix}, \begin{bmatrix} -1\\1\\4\\0 \end{bmatrix} \right\} \right\}$ is a basis for the column space.

The rank of A is the number of vectors in a basis for the row space (or column space) of A, so the rank of A is $\boxed{3}$.

Grading: +10 points for finding a basis for the null space, +5 points for each of: a basis for the row space, a basis for the column space, the nullity, the rank. Grading for common mistakes: -3 points for forgetting a variable in the parameterization; -3 points for choosing columns of R for the column space of A; -3 points for choosing rows from A for the row space of A; -7 points for choosing the non-pivot columns of A for the null space of A.

2. Let *B* be the (ordered) basis
$$\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}, \begin{bmatrix} 3 \\ -2 \\ -4 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix} \end{pmatrix}$$
 and *C* the basis $\begin{pmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix} \end{pmatrix}$.
a. [10 points] Find the coordinates of $\begin{bmatrix} 12 \\ -6 \\ -10 \end{bmatrix}$ with respect to the basis *B*.

Solution:

$$[\vec{u}]_B = \tilde{B}^{-1} \cdot \vec{u} = \begin{bmatrix} 1 & 3 & -1 \\ -1 & -2 & 2 \\ -2 & -4 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 12 \\ -6 \\ -10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation.

b. [10 points] If the coordinates of \vec{u} with respect to C are $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$, what are the coordinates of \vec{u} with respect to B?

Solution:

$$[\vec{u}]_B = \widetilde{B}^{-1} \cdot \widetilde{C} \cdot [\vec{u}]_C = \begin{bmatrix} 1 & 3 & -1 \\ -1 & -2 & 2 \\ -2 & -4 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 0 & 3 \\ 1 & -1 & 5 \\ 2 & -1 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -90 \\ 31 \\ -7 \end{bmatrix}.$$

Grading: +3 points for the formula, +4 points for substitution, +3 points for calculation. Grading for common mistakes: +7 points for $\begin{bmatrix} 4\\3\\0 \end{bmatrix}$ (backwards), +5 points for $CB^{-1}[u] = \begin{bmatrix} -15\\-21\\-35 \end{bmatrix}$, +5 points for $BC^{-1}[u] = \begin{bmatrix} -2\\1\\2 \end{bmatrix}$, +5 points for $B^{-1}[u] = \begin{bmatrix} -12\\4\\-1 \end{bmatrix}$, +7 points for finding the change-of-basis matrix.

3. [15 points] Let
$$\vec{v}_1 = \begin{bmatrix} 5\\1\\1\\1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 4\\3\\-4\\4 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -25\\-16\\19\\-21 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} 2\\-1\\-1\\5 \end{bmatrix}$. Is the vector $\begin{bmatrix} -22\\-19\\23\\-19 \end{bmatrix}$ in the span of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$? Justify your answer.

Solution: You must determine whether the augmented matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4 | \vec{u}]$ is a system that has at least one solution.

Γ5	4	-25	2	-22 $\!$ $\!$	_	Γ1	0	-1	0	ך 0
1	3	-16	-1	-19	L L L	0	1	-5	0	-6
1	-4	19	-1	23	$\xrightarrow[RREF]{}$	0	0	0	1	1
L1	4	-21	5	-19		LΟ	0	0	0	0

Since this system has infinitely many solutions, it has at least one, and so the vector is in the span.

Grading: +4 points for setting up the matrix, +4 points for the RREF, +3 points for determining how many solutions there were, +4 points for answering YES/NO. Grading for common mistakes: -8 points for using $\vec{0}$ instead of \vec{u} .

4. [15 points] Find a basis for the subspace spanned by
$$\left\{ \begin{bmatrix} -3\\-3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 3\\3\\1\\-2\\-2 \end{bmatrix}, \begin{bmatrix} 12\\12\\4\\-8 \end{bmatrix}, \begin{bmatrix} -3\\2\\3\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\18\\13\\-11 \end{bmatrix} \right\}, \text{ and}$$

the dimension of that subspace.

Solution: To find this basis, use the column space (CS) approach: Glue the vectors together to get the matrix \tilde{V} , find the RREF, and take the original vectors that have pivots in their columns:

Thus, $\left\{ \begin{bmatrix} -3\\ -3\\ -1\\ 2 \end{bmatrix}, \begin{bmatrix} -3\\ 2\\ 3\\ -1 \end{bmatrix}, \right\}$ is a basis for this subspace. Its dimension is the number of vectors in

the basis, which is 2.

- 5. The eigenvalues of the matrix $A = \begin{bmatrix} 0 & 11 & -12 \\ 0 & 3 & 0 \\ 1 & -4 & 7 \end{bmatrix}$ are 3 (with multiplicity 2) and 4 (with multiplicity 1). (You do not need to find these.) Do the following for the matrix A:
 - a. [10 points] Find a basis for the eigenspace of each eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the null space of $A - \lambda I$. So, if $\lambda = 3$,

$$A - \lambda I = \begin{bmatrix} -3 & 11 & -12\\ 0 & 0 & 0\\ 1 & -4 & 4 \end{bmatrix} \xrightarrow{\blacksquare} RREF \begin{bmatrix} 1 & 0 & 4\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}.$$

This is parameterized by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4\alpha \\ 0 \\ \alpha \end{bmatrix} = \alpha \cdot \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$

Thus, $\left\{ \begin{bmatrix} -4\\0\\1 \end{bmatrix} \right\}$ is a basis for the eigenspace of $\lambda = 3$. If $\lambda = 4$, $A - \lambda I = \begin{bmatrix} -4 & 11 & -12\\0 & -1 & 0\\1 & -4 & 3 \end{bmatrix} \xrightarrow{\blacksquare} \begin{bmatrix} 1 & 0 & 3\\0 & 1 & 0\\0 & 0 & 0 \end{bmatrix}$, and $\left\{ \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}$ is a basis for the eigenspace of $\lambda = 4$.

Grading: +3 points for $A - \lambda I$, +3 points for the RREF, +4 points for finding the null space basis.

b. [10 points] Is the matrix A diagonalizable? If so, find matrices D and P such that $A = PDP^{-1}$ and D is a diagonal matrix. If A is not diagonalizable explain carefully why it is not.

Solution: NO. The dimension of the eigenspace of
$$\lambda = 3$$
 is less than its multiplicity $(1 < 2)$.
You could also have said that the matrix $P = \begin{bmatrix} -4 & -3 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$ doesn't end up being square.
Grading: +3 points for yes/no, +7 points for the explanation. Full credit — +10^{*} points

was given for an answer consistent with any mistakes made in part (a).