MAT 242 Test 1 SOLUTIONS, FORM A

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for x.

Solution:

$$x = \frac{\begin{vmatrix} -1 & -2 \\ 3 & -2 \\ \end{vmatrix}}{\begin{vmatrix} -3 & -2 \\ 2 & -2 \end{vmatrix}} = \frac{8}{10} = \boxed{\frac{4}{5}}.$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.

2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.

(a) $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	-1 0 0 0	$\begin{array}{ccc} 0 & -{\bf 1} \\ 1 & -{\bf 3} \\ 0 & {\bf 0} \\ 0 & {\bf 0} \end{array}$	$\begin{array}{c c} 0 & -4 \\ 0 & -3 \\ 1 & 2 \\ 0 & 0 \end{array} \right]$	infinitely many
(b) $\begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$	$-2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2 0 0 1 0 0 0 0	$\begin{bmatrix} 0 & 0 \\ 0 & -3 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$	None
(c) $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	$ \begin{array}{c c} 0 & 2 \\ 0 & 3 \\ 1 & 0 \\ 0 & 0 \end{array} $		Exactly one

Solution: Correct answers are given above, and the relevant entries are in **boldface**.

3. [20 points] Find the inverse of the matrix $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix}$ using Gauss-Jordan Elimination. (Other methods may result in the loss of points.) ods may result in the loss of points.)

Solution: Typical row operations are shown below.

$$\begin{bmatrix} -1 & 0 & 1 & | & 1 & 0 & 0 \\ -2 & 1 & 0 & | & 0 & 1 & 0 \\ -1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-(1)} \begin{bmatrix} 1 & 0 & -1 & | & -1 & 0 & 0 \\ -2 & 1 & 0 & | & 0 & 1 & 0 \\ -1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(2)+2(1)} \begin{bmatrix} 1 & 0 & -1 & | & -1 & 0 & 0 \\ 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 1 & -1 & | & -1 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(3)+(2)} \begin{bmatrix} 1 & 0 & -1 & | & -1 & 0 & 0 \\ 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 1 & -1 & 1 \end{bmatrix}$$
$$\xrightarrow{(1)+(3)} \begin{bmatrix} 1 & 0 & 0 & | & 0 & -1 & 1 \\ 0 & 1 & 0 & | & 0 & -1 & 2 \\ 0 & 0 & 1 & | & 1 & -1 & 1 \end{bmatrix}$$
is thus
$$\begin{bmatrix} 0 & -1 & 1 \\ 0 & -1 & 2 \\ 0 & -1 & 2 \end{bmatrix}$$

The inverse is thus $\begin{bmatrix} 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix}$. Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.

 $60x_1 - 30x_2 - 11x_3 + 3x_4 = 0$ $198x_1 - 104x_2 - 39x_3 + 12x_4 = 2$ using the fact that $\begin{bmatrix} 60 & -30 & -11 & 3\\ 198 & -104 & -39 & 12\\ -52 & 27 & 10 & -3\\ 15 & -8 & -3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 2 & 3\\ 3 & 1 & 9 & 6\\ -2 & -3 & -12 & 6\\ 3 & -1 & 6 & 22 \end{bmatrix}.$ (Other methods may result in the loss of points.)

Solution: Use the $X = A^{-1}B$ formula:

$[x_1]$	F 60	-30	-11	3 T -	Γ	ך 0		Г 1	0	2	3-	1	۲0 J		г 14	4 J
x_2	198	-104	-39	12		$2 \mid$		3	1	9	6		2		5	0
$ x_3 =$	-52	27	10	-3	•	4	=	-2	-3	$9 \\ -12$	6	•	4	=	-42	2
$\lfloor x_4 \rfloor$	L 15	-8	-3	1	L	$2 \rfloor$				6			$\lfloor 2 \rfloor$		L 6	

Grading: +5 points for the $A^{-1}B$ formula, +5 points for substituting A^{-1} , +5 points for doing the multiplication. Grading for common mistakes: -5 points for AB; +7 points (total) for using another method and getting the correct answer.

5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_1, x_2, x_3, x_4 , and x_5 .

$$\begin{bmatrix} 1 & 0 & 1 & -1 & 0 & | & -2 \\ 0 & 1 & 3 & -3 & 1 & | & -6 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Solution: The variables which do not have pivots in their columns are x_3 , x_4 , and x_5 . They are free variables, so set $x_3 = r$, $x_4 = s$, and $x_5 = t$. The rows of the matrix represent the equations

$$\begin{aligned} x_1 + x_3 - x_4 &= -2 \\ x_2 + 3x_3 - 3x_4 + x_5 &= -6 \end{aligned} \qquad \begin{aligned} x_1 &= -2 - x_3 + x_4 &= -2 - r + s \\ x_2 &= -6 - 3x_3 + 3x_4 - x_5 &= -6 - 3r + 3s - t \end{aligned}$$

so the parameterization is

 $\begin{array}{c} x_1 = -2 - r + s \\ x_2 = -6 - 3r + 3s - t \\ x_3 = r \\ x_4 = s \\ x_5 = t \end{array}$ where r, s, t can be any real numbers

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.

6. [20 points] Find
$$\begin{vmatrix} 1 & -1 & -2 & 2 \\ -3 & 3 & 0 & -3 \\ -2 & 3 & -3 & -2 \\ 0 & 2 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & -2 & 2 \\ -3 & 3 & 0 & -3 \\ -2 & 3 & -3 & -2 \\ 0 & 2 & 0 & 0 \end{vmatrix} = \underbrace{EM:R4}_{EM:R4} 0 \cdot -|*| + 2 \cdot + \begin{vmatrix} 1 & -2 & 2 \\ -3 & 0 & -3 \\ -2 & -3 & -2 \end{vmatrix} + 0 \cdot -|*| + 0 \cdot + |*|$$
$$= 2 \cdot [(0) + (-12) + (18) - (0) - (9) - (-12)] = \boxed{18.}$$

Gaussian elimination:

$$\begin{vmatrix} 1 & -1 & -2 & 2 \\ -3 & 3 & 0 & -3 \\ -2 & 3 & -3 & -2 \\ 0 & 2 & 0 & 0 \end{vmatrix} \xrightarrow{\boxed{2} + 3(1)}_{(3) + 2(1)} \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 0 & -6 & 3 \\ 0 & 2 & 0 & 0 \end{vmatrix} \xrightarrow{\boxed{2} + 3(1)}_{(2) + 3(1)} \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 0 & -6 & 3 \\ 0 & 2 & 0 & 0 \end{vmatrix} \xrightarrow{\boxed{2} + 3(1)}_{(2) + 3(2)} \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 2 & 0 & 0 \end{vmatrix} \xrightarrow{\boxed{2} + 3(1)}_{(2) + 3(2)} \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 1 & -7 & 2 \\ 0 & 0 & -6 & 3 \\ 0 & 0 & 14 & -4 \end{vmatrix} \xrightarrow{\boxed{2} + 2(3)}_{(4) + 2(3)} (-1) \cdot \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 1 & -7 & 2 \\ 0 & 0 & -6 & 3 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -6 & 3 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & -6 & 3 \end{vmatrix} \xrightarrow{\boxed{4} + 2(3)}_{(4) + 3(3)} \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 1 & -7 & 2 \\ 0 & 1 & -7 & 2 \\ 0 & 0 & -6 & 3 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & -6 & 3 \end{vmatrix} \xrightarrow{\boxed{4} + 3(3)}_{(4) + 3(3)} \begin{vmatrix} 1 & -1 & -2 & 2 \\ 0 & 1 & -7 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 9 \end{vmatrix}$$
$$= (1 \cdot 1 \cdot 2 \cdot 9) = \boxed{18.}$$

MAT 242 Test 1 SOLUTIONS, FORM B

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for y.

$$\begin{array}{rcrcr} 2x + 2y &= 2\\ 3x - 3y &= 0 \end{array}$$

Solution:

$$y = \frac{\begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix}}{\begin{vmatrix} 2 & 2 \\ 3 & -3 \end{vmatrix}} = \frac{-6}{-12} = \boxed{\frac{1}{2}}.$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.

2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.

(a) $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c c} 0 & 0 & -3 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \\ \end{array} $	Exactly one
(b) $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c cccc} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} $	Infinitely many
(c) $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c c c} 0 & -2 & -3 \\ 1 & -2 & 2 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{array} \right] $	None

Solution: Correct answers are given above, and the relevant entries are in **boldface**.

3. [20 points] Find the inverse of the matrix $\begin{bmatrix} 3 & 3 & -1 \\ 1 & -2 & 1 \\ 0 & -2 & 1 \end{bmatrix}$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$\begin{bmatrix} 3 & 3 & -1 & | & 1 & 0 & 0 \\ 1 & -2 & 1 & | & 0 & 1 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{(1)} (1-22) \begin{bmatrix} 1 & 7 & -3 & | & 1 & -2 & 0 \\ 1 & -2 & 1 & | & 0 & 1 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(2)} \begin{bmatrix} 1 & 7 & -3 & | & 1 & -2 & 0 \\ 0 & -9 & 4 & | & -1 & 3 & 0 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(2)} \begin{bmatrix} 1 & 7 & -3 & | & 1 & -2 & 0 \\ 0 & 1 & -1 & | & -1 & 3 & -5 \\ 0 & -2 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(3)} + 2(2) \begin{bmatrix} 1 & 7 & -3 & | & 1 & -2 & 0 \\ 0 & 1 & -1 & | & -1 & 3 & -5 \\ 0 & 0 & -1 & | & -2 & 6 & -9 \end{bmatrix}$$
$$\xrightarrow{(3)} + 2(2) \begin{bmatrix} 1 & 7 & -3 & | & 1 & -2 & 0 \\ 0 & 1 & -1 & | & -1 & 3 & -5 \\ 0 & 0 & -1 & | & -2 & 6 & -9 \end{bmatrix}$$
$$\xrightarrow{(1)} + 3(3) \begin{bmatrix} 1 & 7 & -3 & | & 1 & -2 & 0 \\ 0 & 1 & -1 & | & -1 & 3 & -5 \\ 0 & 0 & 1 & | & 2 & -6 & 9 \end{bmatrix}$$
$$\xrightarrow{(1)} + 3(3) \begin{bmatrix} 1 & 7 & 0 & | & 7 & -20 & 27 \\ 0 & 1 & 0 & | & 1 & -3 & 4 \\ 0 & 0 & 1 & | & 2 & -6 & 9 \end{bmatrix}$$
$$\xrightarrow{(1)} + (3) \begin{bmatrix} 1 & 0 & 0 & | & 0 & 1 & -1 \\ 0 & 1 & 0 & | & 1 & -3 & 4 \\ 0 & 0 & 1 & | & 2 & -6 & 9 \end{bmatrix}$$

The inverse is thus $\begin{bmatrix} 0 & 1 & -1 \\ 1 & -3 & 4 \\ 2 & -6 & 9 \end{bmatrix}.$

Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.

using the fact that $\begin{bmatrix} -8 & 6 & -7 & -5 \\ -4 & 2 & 3 & 0 \\ 3 & -2 & 0 & 1 \\ 5 & -3 & -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & -3 & -3 & -2 \\ -2 & -7 & -3 & -7 \\ 0 & 1 & -2 & 2 \\ -1 & -5 & 4 & -8 \end{bmatrix}$. (Other methods may result in the loss

of points.)

Solution: Use the $X = A^{-1}B$ formula:

$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} -8 \end{bmatrix}$	6	-7	-5]	-1	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$		$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	-3	-3	-2]		$\begin{bmatrix} 2 \end{bmatrix}$		[-11 ⁻	1
$\begin{vmatrix} x_2 \\ x_3 \end{vmatrix}$	=	$\begin{vmatrix} -4 \\ 3 \end{vmatrix}$	$\frac{2}{-2}$	$\frac{3}{0}$	$\begin{array}{c} 0\\ 1\end{array}$		$\begin{vmatrix} 0\\ 1 \end{vmatrix}$	=	$\begin{vmatrix} -2 \\ 0 \end{vmatrix}$	-7 1	-3 -2	$\frac{-7}{2}$	•	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	=	$\begin{bmatrix} -11 \\ -28 \\ 4 \\ -22 \end{bmatrix}$	
$\begin{bmatrix} x_4 \end{bmatrix}$		5					3		$\lfloor -1 \\$	-5	4 -	-8]		3		-22	

Grading: +5 points for the $A^{-1}B$ formula, +5 points for substituting A^{-1} , +5 points for doing the multiplication. Grading for common mistakes: -5 points for AB; +7 points (total) for using another method and getting the correct answer.

5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_1 , x_2 , x_3 , and x_4 .

Γ	1	-1	0	2	1]
	0	0	1	3	7
L	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	0	0	0	$\begin{bmatrix} 1 \\ 7 \\ 0 \end{bmatrix}$

Solution: The variables which do not have pivots in their columns are x_2 and x_4 . They are free variables, so set $x_2 = r$ and $x_4 = s$. The rows of the matrix represent the equations

 $\begin{array}{ccc} x_1 - x_2 + 2x_4 = 1 & & x_1 = 1 + x_2 - 2x_4 = 1 + r - 2s \\ x_3 + 3x_4 = 7 & & so \\ x_3 = 7 - 3x_4 = 7 - 3s \end{array}$

so the parameterization is

 $x_1 = 1 + r - 2s$ $x_2 = r$ $x_3 = 7 - 3s$ $x_4 = s$ where r, s can be any real numbers

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.

6. [20 points] Find
$$\begin{vmatrix} 1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 \\ -3 & 3 & 0 & 2 \\ -1 & 0 & 0 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 \\ -3 & 3 & 0 & 2 \\ -1 & 0 & 0 & 2 \end{vmatrix} = \underbrace{EM:C3}_{EM:C3} 2 \cdot + \begin{vmatrix} 2 & 3 & 1 \\ -3 & 3 & 2 \\ -1 & 0 & 2 \end{vmatrix} + 0 \cdot - |*| + 0 \cdot + |*| + 0 \cdot - |*|$$
$$= 2 \cdot [(12) + (-6) + (0) - (-3) - (0) - (-18)] = \boxed{54.}$$

Gaussian elimination:

MAT 242 Test 1 SOLUTIONS, FORM C

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for x.

$$\begin{array}{rcl} -2x & -3y & = 1 \\ -2x & + & y & = 3 \end{array}$$

Solution:

$$x = \frac{\begin{vmatrix} 1 & -3 \\ 3 & 1 \end{vmatrix}}{\begin{vmatrix} -2 & -3 \\ -2 & 1 \end{vmatrix}} = \frac{-5}{4} = \boxed{-\frac{5}{4}}.$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.

2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.

(a)	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	$ \begin{bmatrix} 0 & 2 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} $	Exactly one
(b)	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	3 0 0 0	$ \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $	infinitely many
(c)	$\begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$	1 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	None

Solution: Correct answers are given above, and the relevant entries are in **boldface**.

3. [20 points] Find the inverse of the matrix $\begin{bmatrix} 0 & -3 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$\begin{bmatrix} 0 & -3 & -1 & | & 1 & 0 & 0 \\ -1 & 1 & 0 & | & 0 & 1 & 0 \\ 1 & 0 & 0 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{(1) \leftrightarrow (3)} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ -1 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & -3 & -1 & | & 1 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{(2) + (1)} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 0 & | & 0 & 1 & 1 \\ 0 & -3 & -1 & | & 1 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{(3) + 3(2)} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & -1 & | & 1 & 3 & 3 \end{bmatrix}$$
$$\xrightarrow{(-3)} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 1 & | & -1 & -3 & -3 \end{bmatrix}$$
The inverse is thus
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -3 & -3 \end{bmatrix}.$$

Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.

using the fact that $\begin{bmatrix} -9 & -2 & -4 & 0 \\ -10 & -3 & -2 & -1 \\ 4 & 1 & 1 & 0 \\ -1 & -1 & 1 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -2 & -2 & 2 \\ -3 & 7 & 9 & -7 \\ -1 & 1 & 0 & -1 \\ 1 & -4 & -7 & 3 \end{bmatrix}$ (Other methods may result in the loss

of points.)

Solution: Use the $X = A^{-1}B$ formula:

$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	$\begin{bmatrix} -9 & -2 & -4 & 0 \\ -10 & -3 & -2 & -1 \end{bmatrix}^{-1}$	$\begin{bmatrix} 2\\0 \end{bmatrix}$	$\begin{bmatrix} 1 & -2 & -2 & 2 \\ -3 & 7 & 9 & -7 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 6 \\ -18 \end{bmatrix}$
$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} =$	$\left[\begin{array}{rrrr} 4 & 1 & 1 & 0 \\ -1 & -1 & 1 & -1 \end{array}\right]$	$\begin{bmatrix} 1\\ 3 \end{bmatrix} =$	$\begin{bmatrix} 1 & -2 & -2 & 2 \\ -3 & 7 & 9 & -7 \\ -1 & 1 & 0 & -1 \\ 1 & -4 & -7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -5\\4 \end{bmatrix}$

Grading: +5 points for the $A^{-1}B$ formula, +5 points for substituting A^{-1} , +5 points for doing the multiplication. Grading for common mistakes: -5 points for AB; +7 points (total) for using another method and getting the correct answer.

5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_1 , x_2 , x_3 , and x_4 .

$$\begin{bmatrix} 1 & 0 & 2 & 2 & | & 4 \\ 0 & 1 & -2 & 1 & | & -8 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Solution: The variables which do not have pivots in their columns are x_3 and x_4 . They are free variables, so set $x_3 = r$ and $x_4 = s$. The rows of the matrix represent the equations

$$\begin{array}{ll} x_1 + 2x_3 + 2x_4 = 4 \\ x_2 - 2x_3 + x_4 = -8 \end{array} \qquad \begin{array}{ll} x_1 = 4 - 2x_3 - 2x_4 = 4 - 2r - 2s \\ x_2 = -8 + 2x_3 - x_4 = -8 + 2r - s \end{array}$$

so the parameterization is

 $\begin{aligned} x_1 &= 4 - 2r - 2s \\ x_2 &= -8 + 2r - s \\ x_3 &= r \\ x_4 &= s \\ \text{where } r, s \text{ can be any real numbers} \end{aligned}$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.

6. [20 points] Find
$$\begin{vmatrix} 0 & -1 & 3 & 0 \\ 0 & -3 & 2 & -3 \\ 3 & -1 & -3 & -3 \\ 0 & 1 & 0 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 0 & -1 & 3 & 0 \\ 0 & -3 & 2 & -3 \\ 3 & -1 & -3 & -3 \\ 0 & 1 & 0 & 3 \end{vmatrix} = \underbrace{EM:C1}_{EM:C1} 0 \cdot + |*| + 0 \cdot - |*| + 3 \cdot + \begin{vmatrix} -1 & 3 & 0 \\ -3 & 2 & -3 \\ 1 & 0 & 3 \end{vmatrix} + 0 \cdot - |*|$$
$$= 3 \cdot [(-6) + (-9) + (0) - (0) - (0) - (-27)] = \boxed{36.}$$

Gaussian elimination:

MAT 242 Test 1 SOLUTIONS, FORM D

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for y.

$$3x - y = 0$$
$$-2x - 2y = 3$$

Solution:

$$y = \frac{\begin{vmatrix} 3 & 0 \\ -2 & 3 \end{vmatrix}}{\begin{vmatrix} 3 & -1 \\ -2 & -2 \end{vmatrix}} = \frac{9}{-8} = \boxed{-\frac{9}{8}}.$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.

2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.

(a) $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	$ \begin{array}{c c} 0 & -2 \\ 0 & 3 \\ 1 & 1 \\ 0 & 0 \end{array} \right] $	Exactly one
(b) $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 0 0 0	$\begin{array}{c c} 0 & -3 \\ 1 & -1 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$	None
(c) $\begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$ \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $	infinitely many

Solution: Correct answers are given above, and the relevant entries are in **boldface**.

3. [20 points] Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & -1 \\ 4 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

The inverse is thus $\begin{bmatrix} -2 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix}$. Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.

 $53x_{1} + 10x_{2} - 27x_{3} + 11x_{4} = 0$ $-20x_{1} - 3x_{2} + 10x_{3} - 4x_{4} = 2$ $10x_{1} + 2x_{2} - 5x_{3} + 2x_{4} = 4$ $-4x_{1} - x_{2} + 2x_{3} - x_{4} = 2$ using the fact that $\begin{bmatrix} 53 & 10 & -27 & 11 \\ -20 & -3 & 10 & -4 \\ 10 & 2 & -5 & 2 \\ -4 & -1 & 2 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & -1 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ -2 & -2 & 5 & -4 \\ 0 & -1 & -4 & -5 \end{bmatrix}$. (Other methods may result in the loss of points.)

Solution: Use the $X = A^{-1}B$ formula:

$[x_1]$	Г 53 10 -	–27 11 [–]	י ר0ק ו	-1 -1	3 —1 J	[0]	F 87
x_2	-20 -3	10 - 4	2	$0 \ 1$	$2 \ 0$	2	10
	10 2		$\cdot \begin{vmatrix} 2\\4 \end{vmatrix} =$	$-2 \ -2$	5 - 4	$\cdot \mid 4 \mid =$	8
$\lfloor x_4 \rfloor$	-4 -1	$2 \ -1$	$\lfloor 2 \rfloor$	0 -1	$-4 \ -5$	$\lfloor 2 \rfloor$	$\lfloor -28 \rfloor$

Grading: +5 points for the $A^{-1}B$ formula, +5 points for substituting A^{-1} , +5 points for doing the multiplication. Grading for common mistakes: -5 points for AB; +7 points (total) for using another method and getting the correct answer.

5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_1 , x_2 , x_3 , and x_4 .

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 8 \\ 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: There is only one variable that does not have a pivot in its column: x_3 . It is a free variable, so set $x_3 = s$. The rows of the matrix represent the equations

$$\begin{array}{c} x_1 + 3x_3 = 8 \\ x_2 + 2x_3 = 5 \\ x_4 = -3 \end{array} \quad so \quad \begin{array}{c} x_1 = 8 - 3x_3 = 8 - 3r \\ x_1 = 8 - 3x_3 = 8 - 3r \\ x_2 = 5 - 2x_3 = 5 - 2r \end{array}$$

so the parameterization is

 $x_1 = 8 - 3r$ $x_2 = 5 - 2r$ $x_3 = r$ $x_4 = -3$ where r can be any real number

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.

6. [20 points] Find
$$\begin{vmatrix} 0 & 2 & 0 & -1 \\ 2 & 1 & -2 & -3 \\ 0 & -3 & -1 & 3 \\ 2 & 0 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 2 & 0 & -1 \\ 2 & 1 & -2 & -3 \\ 0 & -3 & -1 & 3 \\ 2 & 0 & 0 & 0 \end{vmatrix} = \underbrace{EM : R4}_{EM : R4} 2 \cdot - \begin{vmatrix} 2 & 0 & -1 \\ 1 & -2 & -3 \\ -3 & -1 & 3 \end{vmatrix} + 0 \cdot + |*| + 0 \cdot - |*| + 0 \cdot + |*|$$
$$= -2[(-12) + (0) + (1) - (-6) - (0) - (6)] = \boxed{22.}$$

Gaussian elimination:

MAT 242 Test 1 SOLUTIONS, FORM E

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for x.

$$\begin{array}{rcl} -2x & -3y & = & 1\\ 3x & -2y & = & -2 \end{array}$$

Solution:

$$x = \frac{\begin{vmatrix} 1 & -3 \\ -2 & -2 \end{vmatrix}}{\begin{vmatrix} -2 & -3 \\ 3 & -2 \end{vmatrix}} = \frac{-8}{13} = \boxed{-\frac{8}{13}}.$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.

2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.

(a)	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	$\begin{array}{c c} 0 & 2 \\ 0 & -3 \\ 1 & -2 \\ 0 & 0 \end{array}$		Exactly one
(b)	$\begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}$	-3 0 0 0 0			Infinitely many
(c)	$\begin{bmatrix} 1\\0\\0\\0\\0\\0\end{bmatrix}$	3 0 0 0 0	0 0 1 0 0 1 0 0 0 0	$\begin{array}{c c} 0 & 0 \\ 0 & -2 \\ 1 & 0 \end{array}$	None

Solution: Correct answers are given above, and the relevant entries are in **boldface**.

3. [20 points] Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & -1 & 0 & | & 0 & 1 & 0 \\ 1 & 0 & 0 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{(3) - (1)} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & -1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(1) + (3)} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & -1 & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{bmatrix}$$

The inverse is thus $\begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.

 $354x_1 + 51x_2 - 77x_3 - 24x_4 = 0$ $-75x_1 - 11x_2 + 16x_3 + 5x_4 = 2$ $-44x_1 - 6x_2 + 10x_3 + 3x_4 = 4$ $-14x_1 - 2x_2 + 3x_3 + x_4 = 2$ using the fact that $\begin{bmatrix} 354 & 51 & -77 & -24 \\ -75 & -11 & 16 & 5 \\ -44 & -6 & 10 & 3 \\ -14 & -2 & 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & -3 & -2 & -3 \\ 3 & 8 & 7 & 11 \\ -2 & -6 & -3 & -9 \\ -2 & -8 & -5 & 8 \end{bmatrix}.$ (Other methods may result in the loss of points.)

Solution: Use the $X = A^{-1}B$ formula:

$\lceil x_1 \rceil$		F 354	51	-77	-24 7	$^{-1}$	۲0 T		Γ-1	-3	-2	-37		Г 0 Ј		$\Gamma - 20^{-1}$	1
x_2		-75	-11	16	5		2		3	8	7	11		2		66	
x_3	=	-44	-6	10	3	•	4	=	-2	-6	-3	-9	•	4	=	-42	
$\lfloor x_4 \rfloor$		-14	-2	3	1		$\lfloor 2 \rfloor$		$\lfloor -2 \rfloor$	$^{-8}$	-5	8		$\lfloor 2 \rfloor$		$\begin{bmatrix} -20\\ 66\\ -42\\ -20 \end{bmatrix}$	

Grading: +5 points for the $A^{-1}B$ formula, +5 points for substituting A^{-1} , +5 points for doing the multiplication. Grading for common mistakes: -5 points for AB; +5 points (total) for using another method and getting the correct answer.

5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_1, x_2, x_3 , and x_4 .

1	0	0	1	3]
0	1	2	1	2
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0	0	0	$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$

Solution: The variables which do not have pivots in their columns are x_3 and x_4 . They are free variables, so set $x_3 = r$ and $x_4 = s$. The rows of the matrix represent the equations

 $\begin{array}{ccc} x_1 + x_4 = 3 & x_1 = 3 - x_4 = 3 - s \\ x_2 + 2x_3 + x_4 = 2 & so & x_2 = 2 - 2x_3 + x_4 = 2 - 2r - s \end{array}$

so the parameterization is

 $\begin{array}{c} x_1 = 3 - s \\ x_2 = 2 - 2r - s \\ x_3 = r \\ x_4 = s \end{array}$ where r, s can be any real numbers

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.

6. [20 points] Find
$$\begin{vmatrix} 0 & 1 & 1 & 2 \\ 0 & 2 & 0 & -2 \\ -3 & 0 & -1 & 3 \\ 0 & -3 & -2 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 1 & 1 & 2 \\ 0 & 2 & 0 & -2 \\ -3 & 0 & -1 & 3 \\ 0 & -3 & -2 & -2 \end{vmatrix} = \underbrace{EM:C1}_{EM:C1} 0 \cdot + |*| + 0 \cdot - |*| + (-3) \cdot + \begin{vmatrix} 1 & 1 & 2 \\ 2 & 0 & -2 \\ -3 & -2 & -2 \end{vmatrix} + 0 \cdot - |*| = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (6) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) - (0) - (4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) - (0) - (-4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) - (-8) - (0) - (-4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) - (-8) - (-8) - (-4) - (-4)]}_{EM:C1} = \underbrace{[-3](0) + (-8) -$$

Gaussian elimination:

$$\begin{vmatrix} 0 & 1 & 1 & 2 \\ 0 & 2 & 0 & -2 \\ -3 & 0 & -1 & 3 \\ 0 & -3 & -2 & -2 \end{vmatrix} \xrightarrow{(1) \leftrightarrow (3)} (-1) \cdot \begin{vmatrix} -3 & 0 & -1 & 3 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & -3 & -2 & -2 \end{vmatrix} \xrightarrow{(2) \leftrightarrow (3)} \begin{vmatrix} -3 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & -3 & -2 & -2 \end{vmatrix}$$
$$\xrightarrow{(3) - 2(2)}_{(3) \leftrightarrow (4)} \begin{vmatrix} -3 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -2 & -6 \\ (4) + 3(2) \end{vmatrix} \xrightarrow{(-1) \leftrightarrow (-3)}_{(3) \leftrightarrow (4)} (-1) \cdot \begin{vmatrix} -3 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & -2 & -6 \\ \hline (3) \leftrightarrow (4) \end{vmatrix} = (-1) \cdot (-3 \cdot 1 \cdot 1 \cdot 2) = \boxed{6}.$$

MAT 242 Test 1 SOLUTIONS, FORM F

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for y.

Solution:

$$y = \frac{\begin{vmatrix} 2 & -2 \\ -3 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ -3 & -1 \end{vmatrix}} = \frac{-4}{7} = \boxed{-\frac{4}{7}}.$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.

2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.

(a) $\begin{bmatrix} 1\\0\\0\\0\\0\end{bmatrix}$	0 1 0 0 0	$ \begin{array}{c cccc} 0 & 0 & 0 & -2 \\ 0 & 0 & -3 & 2 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & -1 \\ \end{array} $	None
(b) $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0 0	$ \begin{array}{cccc} 0 & 0 & -2 \\ 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array} $	Exactly one
(c) $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	3 0 0 0 0	$\begin{array}{c c} 0 & -6 \\ 1 & -3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$	Infinitely many

Solution: Correct answers are given above, and the relevant entries are in **boldface**.

3. [20 points] Find the inverse of the matrix $\begin{bmatrix} -3 & 0 & 1 \\ -5 & 1 & 3 \\ -2 & 0 & 1 \end{bmatrix}$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$\begin{bmatrix} -3 & 0 & 1 & | & 1 & 0 & 0 \\ -5 & 1 & 3 & | & 0 & 1 & 0 \\ -2 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{(1)-2(3)} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & -2 \\ -5 & 1 & 3 & | & 0 & 1 & 0 \\ -2 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{(2)+5(1)} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & -2 \\ 0 & 1 & -2 & | & 5 & 1 & -10 \\ 0 & 0 & -1 & | & 2 & 0 & -3 \end{bmatrix}$$
$$\xrightarrow{(1)+(3)} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & -2 \\ 0 & 1 & -2 & | & 5 & 1 & -10 \\ 0 & 0 & 1 & | & -2 & 0 & 3 \end{bmatrix}$$
$$\xrightarrow{(1)+(3)} \begin{bmatrix} 1 & 0 & -1 & | & 1 & 0 & -2 \\ 0 & 1 & -2 & | & 5 & 1 & -10 \\ 0 & 0 & 1 & | & -2 & 0 & 3 \end{bmatrix}$$

The inverse is thus $\begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & -4 \\ -2 & 0 & 3 \end{bmatrix}$. Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicat-

Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.

$$28x_{1} - 6x_{2} - 2x_{3} - x_{4} = 0$$

$$105x_{1} - 20x_{2} - 9x_{3} - 6x_{4} = 2$$

$$60x_{1} - 12x_{2} - 5x_{3} - 3x_{4} = 4$$

$$-24x_{1} + 5x_{2} + 2x_{3} + x_{4} = 2$$
using the fact that
$$\begin{bmatrix} 28 & -6 - 2 & -1 \\ 105 & -20 & -9 & -6 \\ 60 & -12 & -5 & -3 \\ -24 & 5 & 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & -3 & -2 \\ 3 & 4 & -12 & -9 \\ 3 & 0 & 1 & 6 \\ 3 & 4 & -14 & -14 \end{bmatrix}.$$
(Other methods may result in the loss of points.)

Solution: Use the $X = A^{-1}B$ formula:

$\lceil x_1 \rceil$	F 28 −6 −2	$2 - 1 1^{-1}$	Γ ⁰] Γ ¹	1 - 3	-2 \Box	[0]	$\lceil -14 \rceil$
x_2	105 - 20 - 9	9 - 6	2 3	4 - 12	-9	2	-58
$ x_3 =$	$\begin{bmatrix} 105 & -20 & -9\\ 60 & -12 & -5\\ -24 & 5 & 2 \end{bmatrix}$	5 -3	$\cdot \mid 4 \mid = \mid 3$	0 1	6 .	4 =	16
$\lfloor x_4 \rfloor$	-24 5 2	2 1	$\lfloor 2 \rfloor \lfloor 3$	4 - 14	-14	$\lfloor 2 \rfloor$	$\lfloor -76 \rfloor$

Grading: +5 points for the $A^{-1}B$ formula, +5 points for substituting A^{-1} , +5 points for doing the multiplication. Grading for common mistakes: -5 points for AB; +5 points (total) for using another method and getting the correct answer.

5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_1, x_2, x_3, x_4 , and x_5 .

Γ1	0	0	0	$2 \mid$	[4-
0	1	$\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \end{array}$	0	-2	8
0	0	0	1	3	-4
LΟ	0	$\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \end{array}$	0	0	0

Solution: The variables which do not have pivots in their columns are x_3 and x_5 . They are free variables, so set $x_3 = r$ and $x_5 = s$. The rows of the matrix represent the equations

$$x_{1} + 2x_{5} = -4 \qquad x_{1} = -4 - 2x_{5} = -4 - 2s$$

$$x_{2} - x_{3} - 2x_{5} = 8 \qquad \text{so} \qquad x_{2} = 8 + x_{3} + 2x_{5} = 8 + r + 2s$$

$$x_{4} + 3x_{5} = -4 \qquad x_{4} = -4 - 3x_{5} = -4 - 3s$$

so the parameterization is

 $x_1 = -4 - 2s$ $x_2 = 8 + r + 2s$ $x_3 = r$ $x_4 = -4 - 3s$ $x_5 = s$ where r, s can be any real numbers

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.

6. [20 points] Find
$$\begin{vmatrix} 2 & -3 & -2 & 1 \\ 2 & -2 & 3 & -1 \\ 0 & -3 & -1 & -3 \\ 0 & 3 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 2 & -3 & -2 & 1 \\ 2 & -2 & 3 & -1 \\ 0 & -3 & -1 & -3 \\ 0 & 3 & 0 & 0 \end{vmatrix} = \underbrace{EM : R4}_{EM : R4} 0 \cdot -|*| + 3 \cdot + \begin{vmatrix} 2 & -2 & 1 \\ 2 & 3 & -1 \\ 0 & -1 & -3 \end{vmatrix} + 0 \cdot -|*| + 0 \cdot + |*|$$
$$= 3[(-18) + (0) + (-2) - (0) - (2) - (12)] = \boxed{-102}.$$

Gaussian elimination: