MAT 242 Test 1 SOLUTIONS, FORM A

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for x.

$$
\begin{array}{r}
-3 x-2 y=-1 \\
2 x-2 y=3
\end{array}
$$

Solution:

$$
x=\frac{\left|\begin{array}{rr}
-1 & -2 \\
3 & -2
\end{array}\right|}{\left|\begin{array}{r}
-3
\end{array}\right|} \begin{array}{r}
2
\end{array}|-2| \frac{8}{10}=\frac{4}{5} .
$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.
2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.
(a) $\left[\begin{array}{rrrrr|r}1 & -\mathbf{1} & 0 & \mathbf{- 1} & 0 & -4 \\ 0 & \mathbf{0} & 1 & \mathbf{- 3} & 0 & -3 \\ 0 & \mathbf{0} & 0 & \mathbf{0} & 1 & 2 \\ 0 & \mathbf{0} & 0 & \mathbf{0} & 0 & 0\end{array}\right]$
infinitely many
(b) $\left[\begin{array}{rrrrr|r}1 & -2 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{- 1}\end{array}\right]$
(c) $\left[\begin{array}{lll|l}\mathbf{1} & 0 & 0 & 2 \\ 0 & \mathbf{1} & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Exactly one

Solution: Correct answers are given above, and the relevant entries are in boldface.
Grading: +3 points for the correct answer, +2 points for indicating the entries (or for a brief explanation). Grading for common errors: -3 points for a wrong answer, -1 points for not indicating the relevant entries.
3. [20 points] Find the inverse of the matrix $\left[\begin{array}{ccc}-1 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 1 & 0\end{array}\right]$ using Gauss-Jordan Elimination. (Other methods may result in the loss of points.)

Solution: Typical row operations are shown below.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
-1 & 0 & 1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[-(1)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & -1 & 0 & 0 \\
-2 & 1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[\substack{(2)+2(1) \\
(3)+(1)}]{ }\left[\begin{array}{lll|lll}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 1 & -1 & -1 & 0 & 1
\end{array}\right] \\
& \xrightarrow[(3)-(2)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right] \\
& \left.\xrightarrow[\begin{array}{c}
(1)+(3) \\
(2)+2(3)
\end{array}]{l l l \mid l l l} \begin{array}{lllll}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
0 \\
0 & 0 & 1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

The inverse is thus $\left[\begin{array}{lll}0 & -1 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1\end{array}\right]$.
Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.
4. [15 points] Solve the system of linear equations

$$
\begin{array}{r}
60 x_{1}-30 x_{2}-11 x_{3}+3 x_{4}=0 \\
198 x_{1}-104 x_{2}-39 x_{3}+12 x_{4}=2 \\
-52 x_{1}+27 x_{2}+10 x_{3}-3 x_{4}=4 \\
15 x_{1}-8 x_{2}-3 x_{3}+x_{4}=2
\end{array}
$$

using the fact that $\left[\begin{array}{rrrr}60 & -30 & -11 & 3 \\ 198 & -104 & -39 & 12 \\ -52 & 27 & 10 & -3 \\ 15 & -8 & -3 & 1\end{array}\right]^{-1}=\left[\begin{array}{rrrr}1 & 0 & 2 & 3 \\ 3 & 1 & 9 & 6 \\ -2 & -3 & -12 & 6 \\ 3 & -1 & 6 & 22\end{array}\right]$. (Other methods may result in the loss of points.)

Solution: Use the $X=A^{-1} B$ formula:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
60 & -30 & -11 & 3 \\
198 & -104 & -39 & 12 \\
-52 & 27 & 10 & -3 \\
15 & -8 & -3 & 1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 2 & 3 \\
3 & 1 & 9 & 6 \\
-2 & -3 & -12 & 6 \\
3 & -1 & 6 & 22
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
14 \\
50 \\
-42 \\
66
\end{array}\right]
$$

Grading: +5 points for the $A^{-1} B$ formula, +5 points for substituting $A^{-1},+5$ points for doing the multiplication. Grading for common mistakes: -5 points for $A B ;+7$ points (total) for using another method and getting the correct answer.
5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}.

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & 1 & -1 & 0 & -2 \\
0 & 1 & 3 & -3 & 1 & -6 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: The variables which do not have pivots in their columns are x_{3}, x_{4}, and x_{5}. They are free variables, so set $x_{3}=r, x_{4}=s$, and $x_{5}=t$. The rows of the matrix represent the equations

$$
\begin{array}{r}
x_{1}+x_{3}-x_{4}=-2 \\
x_{2}+3 x_{3}-3 x_{4}+x_{5}=-6
\end{array} \quad \text { so } \quad \begin{aligned}
& x_{1}=-2-x_{3}+x_{4}=-2-r+s \\
& x_{2}=-6-3 x_{3}+3 x_{4}-x_{5}=-6-3 r+3 s-t
\end{aligned}
$$

so the parameterization is

$$
\begin{aligned}
& x_{1}=-2-r+s \\
& x_{2}=-6-3 r+3 s-t \\
& x_{3}=r \\
& x_{4}=s \\
& x_{5}=t \\
& \text { where } r, s, t \text { can be any real numbers }
\end{aligned}
$$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.
6. [20 points] Find $\left|\begin{array}{rrrr}1 & -1 & -2 & 2 \\ -3 & 3 & 0 & -3 \\ -2 & 3 & -3 & -2 \\ 0 & 2 & 0 & 0\end{array}\right|$

Solution: Two methods will be presented below. First, expansion by minors, followed by Sarrus's method. (* denotes a matrix whose entries are unimportant.)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
-3 & 3 & 0 & -3 \\
-2 & 3 & -3 & -2 \\
0 & 2 & 0 & 0
\end{array}\right| & \xlongequal[E M: R 4]{ } 0 \cdot-|*|+2 \cdot+\left|\begin{array}{rrr}
1 & -2 & 2 \\
-3 & 0 & -3 \\
-2 & -3 & -2
\end{array}\right|+0 \cdot-|*|+0 \cdot+|*| \\
& =2 \cdot[(0)+(-12)+(18)-(0)-(9)-(-12)]=18 .
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
-3 & 3 & 0 & -3 \\
-2 & 3 & -3 & -2 \\
0 & 2 & 0 & 0
\end{array}\right| \xlongequal[(2)+3(1)]{(3)+2(1)}\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
0 & 0 & -6 & 3 \\
0 & 1 & -7 & 2 \\
0 & 2 & 0 & 0
\end{array}\right| \xlongequal[(2) \leftrightarrow(3)]{ }(-1) \cdot\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
0 & 1 & -7 & 2 \\
0 & 0 & -6 & 3 \\
0 & 2 & 0 & 0
\end{array}\right| \\
& \xlongequal[(4)-2(2)]{ }(-1) \cdot\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
0 & 1 & -7 & 2 \\
0 & 0 & -6 & 3 \\
0 & 0 & 14 & -4
\end{array}\right| \xlongequal[(4)+2(3)]{ }(-1) \cdot\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
0 & 1 & -7 & 2 \\
0 & 0 & -6 & 3 \\
0 & 0 & 2 & 2
\end{array}\right| \\
& \xlongequal[(3) \leftrightarrow(4)]{ }\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
0 & 1 & -7 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & -6 & 3
\end{array}\right| \xlongequal[(4)+3(3)]{ }\left|\begin{array}{rrrr}
1 & -1 & -2 & 2 \\
0 & 1 & -7 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 9
\end{array}\right| \\
& =(1 \cdot 1 \cdot 2 \cdot 9)=18 \text {. }
\end{aligned}
$$

Grading for common mistakes: -2 points for not following the +-+- pattern; -10 points for bad row operations; -5 points for not keeping track of the effects of row operations on the determinant; -5 points for bad planning.

MAT 242 Test 1 SOLUTIONS, FORM B

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for y.

$$
\begin{aligned}
& 2 x+2 y=2 \\
& 3 x-3 y=0
\end{aligned}
$$

Solution:

$$
y=\frac{\left|\begin{array}{rr}
2 & 2 \\
3 & 0
\end{array}\right|}{\left|\begin{array}{rr}
2 & 2 \\
3 & -3
\end{array}\right|}=\frac{-6}{-12}=\frac{1}{2}
$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.
2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.
(a) $\left[\begin{array}{lll|l}\mathbf{1} & 0 & 0 & -3 \\ 0 & \mathbf{1} & 0 & -1 \\ 0 & 0 & \mathbf{1} & -2\end{array}\right]$
Exactly one
(b) $\left[\begin{array}{lll|r}1 & \mathbf{1} & 0 & 2 \\ 0 & \mathbf{0} & 1 & -3 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0\end{array}\right]$
Infinitely many
(c) $\left[\begin{array}{rrr|r}1 & 0 & -2 & -3 \\ 0 & 1 & -2 & 2 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{2} \\ 0 & 0 & 0 & 0\end{array}\right]$

Solution: Correct answers are given above, and the relevant entries are in boldface.
Grading: +3 points for the correct answer, +2 points for indicating the entries (or for a brief explanation). Grading for common errors: -3 points for a wrong answer, -1 points for not indicating the relevant entries.
3. [20 points] Find the inverse of the matrix $\left[\begin{array}{rrr}3 & 3 & -1 \\ 1 & -2 & 1 \\ 0 & -2 & 1\end{array}\right]$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
3 & 3 & -1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow[(1)-2(2)]{ }\left[\begin{array}{rrr|rrr}
1 & 7 & -3 & 1 & -2 & 0 \\
1 & -2 & 1 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[\text { (2) }-(1)]{ }\left[\begin{array}{rrr|rrr}
1 & 7 & -3 & 1 & -2 & 0 \\
0 & -9 & 4 & -1 & 3 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[\text { (2) }-5(3)]{ }\left[\begin{array}{rrr|rrr}
1 & 7 & -3 & 1 & -2 & 0 \\
0 & 1 & -1 & -1 & 3 & -5 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[(3)+2(2)]{ }\left[\begin{array}{lll|rrr}
1 & 7 & -3 & 1 & -2 & 0 \\
0 & 1 & -1 & -1 & 3 & -5 \\
0 & 0 & -1 & -2 & 6 & -9
\end{array}\right] \\
& \xrightarrow[-(3)]{ }\left[\begin{array}{rrr|rrr}
1 & 7 & -3 & 1 & -2 & 0 \\
0 & 1 & -1 & -1 & 3 & -5 \\
0 & 0 & 1 & 2 & -6 & 9
\end{array}\right] \\
& \xrightarrow[\begin{array}{c}
(1)+3(3) \\
(2)+(3)
\end{array}]{ }\left[\begin{array}{lll|rrr}
1 & 7 & 0 & 7 & -20 & 27 \\
0 & 1 & 0 & 1 & -3 & 4 \\
0 & 0 & 1 & 2 & -6 & 9
\end{array}\right] \\
& \xrightarrow[(1)-7(2)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 1 & -3 & 4 \\
0 & 0 & 1 & 2 & -6 & 9
\end{array}\right]
\end{aligned}
$$

The inverse is thus $\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & -3 & 4 \\ 2 & -6 & 9\end{array}\right]$.
Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.
4. [15 points] Solve the system of linear equations

$$
\begin{aligned}
-8 x_{1}+6 x_{2}-7 x_{3}-5 x_{4} & =2 \\
-4 x_{1}+2 x_{2}+3 x_{3} & =0 \\
3 x_{1}-2 x_{2}+x_{4} & =1 \\
5 x_{1}-3 x_{2}-x_{3}+x_{4} & =3
\end{aligned}
$$

using the fact that $\left[\begin{array}{rrrr}-8 & 6 & -7 & -5 \\ -4 & 2 & 3 & 0 \\ 3 & -2 & 0 & 1 \\ 5 & -3 & -1 & 1\end{array}\right]^{-1}=\left[\begin{array}{rrrr}-1 & -3 & -3 & -2 \\ -2 & -7 & -3 & -7 \\ 0 & 1 & -2 & 2 \\ -1 & -5 & 4 & -8\end{array}\right]$. (Other methods may result in the loss of points.)

Solution: Use the $X=A^{-1} B$ formula:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
-8 & 6 & -7 & -5 \\
-4 & 2 & 3 & 0 \\
3 & -2 & 0 & 1 \\
5 & -3 & -1 & 1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{rrrr}
-1 & -3 & -3 & -2 \\
-2 & -7 & -3 & -7 \\
0 & 1 & -2 & 2 \\
-1 & -5 & 4 & -8
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{r}
-11 \\
-28 \\
4 \\
-22
\end{array}\right]
$$

Grading: +5 points for the $A^{-1} B$ formula, +5 points for substituting $A^{-1},+5$ points for doing the multiplication. Grading for common mistakes: -5 points for $A B ;+7$ points (total) for using another method and getting the correct answer.
5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_{1}, x_{2}, x_{3}, and x_{4}.

$$
\left[\begin{array}{rrrr|r}
1 & -1 & 0 & 2 & 1 \\
0 & 0 & 1 & 3 & 7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: The variables which do not have pivots in their columns are x_{2} and x_{4}. They are free variables, so set $x_{2}=r$ and $x_{4}=s$. The rows of the matrix represent the equations

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{4}=1 \quad \text { so } \quad \begin{array}{l}
x_{1}=1+x_{2}-2 x_{4}=1+r-2 s \\
x_{3}+3 x_{4}=7
\end{array} \quad \quad x_{3}=7-3 x_{4}=7-3 s
\end{array}
$$

so the parameterization is

$$
\begin{array}{|l|}
\hline x_{1}=1+r-2 s \\
x_{2}=r \\
x_{3}=7-3 s \\
x_{4}=s \\
\text { where } r, s \text { can be any real numbers }
\end{array}
$$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.
6. [20 points] Find $\left|\begin{array}{rrrr}1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 \\ -3 & 3 & 0 & 2 \\ -1 & 0 & 0 & 2\end{array}\right|$

Solution: Two methods will be presented below. First, expansion by minors, followed by Sarrus's method. (* denotes a matrix whose entries are unimportant.)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
2 & 3 & 0 & 1 \\
-3 & 3 & 0 & 2 \\
-1 & 0 & 0 & 2
\end{array}\right| & \xlongequal{E M: C 3} 2 \cdot+\left|\begin{array}{rrr}
2 & 3 & 1 \\
-3 & 3 & 2 \\
-1 & 0 & 2
\end{array}\right|+0 \cdot-|*|+0 \cdot+|*|+0 \cdot-|*| \\
& =2 \cdot[(12)+(-6)+(0)-(-3)-(0)-(-18)]=54 .
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
\left|\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
2 & 3 & 0 & 1 \\
-3 & 3 & 0 & 2 \\
-1 & 0 & 0 & 2
\end{array}\right| & \left.\xlongequal[\substack{(2)-2(1) \\
(3)+3(1)}]{ }\left|\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & -4 & 1 \\
0 & 6 & 6 & 2 \\
0 & 1 & 2 & 2
\end{array}\right| \xlongequal[(3)-6(2)]{(4)-(2)} \right\rvert\, \\
& \xlongequal[(3) \leftrightarrow(4)]{ } \mid-1) \cdot\left|\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & -4 & 1 \\
0 & 0 & 30 & -4 \\
0 & 0 & 6 & 1
\end{array}\right| \\
& \left.\xlongequal{1} \begin{array}{rrrr}
1 & 2 & 0 \\
0 & 1 & -4 & 1 \\
0 & 0 & 6 & 1 \\
0 & 0 & 30-4
\end{array}|\xlongequal[(4)-5(3)]{ }(-1) \cdot| \begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & -4 & 1 \\
0 & 0 & 6 & 1 \\
0 & 0 & 0 & -9
\end{array} \right\rvert\, \\
& =(-1) \cdot(1 \cdot 1 \cdot 6 \cdot(-9))=554 .
\end{aligned}
$$

Grading for common mistakes: -2 points for not following the +-+- pattern; -10 points for bad row operations; -5 points for not keeping track of the effects of row operations on the determinant; -5 points for bad planning.

MAT 242 Test 1 SOLUTIONS, FORM C

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for x.

$$
\begin{aligned}
& -2 x-3 y=1 \\
& -2 x+y=3
\end{aligned}
$$

Solution:

$$
x=\frac{\left|\begin{array}{rr}
1 & -3 \\
3 & 1
\end{array}\right|}{\left|\begin{array}{rr}
-2 & -3 \\
-2 & 1
\end{array}\right|}=\frac{-5}{4}=\boxed{-\frac{5}{4}}
$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.
2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.
(a) $\left[\begin{array}{lll|l}\mathbf{1} & 0 & 0 & 2 \\ 0 & \mathbf{1} & 0 & 1 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Exactly one
(b) $\left[\begin{array}{lll|r}1 & \mathbf{3} & 0 & 0 \\ 0 & \mathbf{0} & 1 & -1 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{lllll|r}1 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & -3 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{3} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ None

Solution: Correct answers are given above, and the relevant entries are in boldface.
Grading: +3 points for the correct answer, +2 points for indicating the entries (or for a brief explanation). Grading for common errors: -3 points for a wrong answer, -1 points for not indicating the relevant entries.
3. [20 points] Find the inverse of the matrix $\left[\begin{array}{rrr}0 & -3 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
0 & -3 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow[(1) \leftrightarrow(3)]{ }\left[\begin{array}{rrr|rlr}
1 & 0 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & -3 & -1 & 1 & 0 & 0
\end{array}\right] \\
& \xrightarrow[(2)+(1)]{ }\left[\begin{array}{rrr|rlr}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & -3 & -1 & 1 & 0 & 0
\end{array}\right] \\
& \xrightarrow[(3)+3(2)]{ }\left[\begin{array}{rrr|rll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & -1 & 1 & 3 & 3
\end{array}\right] \\
& \xrightarrow{-(3)}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & -3 & -3
\end{array}\right]
\end{aligned}
$$

The inverse is thus $\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -3 & -3\end{array}\right]$.
Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.
4. [15 points] Solve the system of linear equations

$$
\begin{aligned}
-9 x_{1}-2 x_{2}-4 x_{3} & =2 \\
-10 x_{1}-3 x_{2}-2 x_{3}-x_{4} & =0 \\
4 x_{1}+x_{2}+x_{3} & =1 \\
-x_{1}-x_{2}+x_{3}-x_{4} & =3
\end{aligned}
$$

using the fact that $\left[\begin{array}{rrrr}-9 & -2 & -4 & 0 \\ -10 & -3 & -2 & -1 \\ 4 & 1 & 1 & 0 \\ -1 & -1 & 1 & -1\end{array}\right]^{-1}=\left[\begin{array}{rrrr}1 & -2 & -2 & 2 \\ -3 & 7 & 9 & -7 \\ -1 & 1 & 0 & -1 \\ 1 & -4 & -7 & 3\end{array}\right]$. (Other methods may result in the loss of points.)

Solution: Use the $X=A^{-1} B$ formula:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
-9 & -2 & -4 & 0 \\
-10 & -3 & -2 & -1 \\
4 & 1 & 1 & 0 \\
-1 & -1 & 1 & -1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -2 & -2 & 2 \\
-3 & 7 & 9 & -7 \\
-1 & 1 & 0 & -1 \\
1 & -4 & -7 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{r}
6 \\
-18 \\
-5 \\
4
\end{array}\right]
$$

Grading: +5 points for the $A^{-1} B$ formula, +5 points for substituting $A^{-1},+5$ points for doing the multiplication. Grading for common mistakes: -5 points for $A B ;+7$ points (total) for using another method and getting the correct answer.
5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_{1}, x_{2}, x_{3}, and x_{4}.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & 2 & 4 \\
0 & 1 & -2 & 1 & -8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: The variables which do not have pivots in their columns are x_{3} and x_{4}. They are free variables, so set $x_{3}=r$ and $x_{4}=s$. The rows of the matrix represent the equations

$$
\begin{aligned}
& x_{1}+2 x_{3}+2 x_{4}=4 \\
& x_{2}-2 x_{3}+x_{4}=-8
\end{aligned} \quad \text { so } \quad \begin{aligned}
& x_{1}=4-2 x_{3}-2 x_{4}=4-2 r-2 s \\
& x_{2}=-8+2 x_{3}-x_{4}=-8+2 r-s
\end{aligned}
$$

so the parameterization is

$$
\begin{array}{|l|}
\hline x_{1}=4-2 r-2 s \\
x_{2}=-8+2 r-s \\
x_{3}=r \\
x_{4}=s \\
\text { where } r, s \text { can be any real numbers } \\
\hline
\end{array}
$$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.
6. [20 points] Find $\left|\begin{array}{rrrr}0 & -1 & 3 & 0 \\ 0 & -3 & 2 & -3 \\ 3 & -1 & -3 & -3 \\ 0 & 1 & 0 & 3\end{array}\right|$

Solution: Two methods will be presented below. First, expansion by minors, followed by Sarrus's method. (* denotes a matrix whose entries are unimportant.)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
0 & -1 & 3 & 0 \\
0 & -3 & 2 & -3 \\
3 & -1 & -3 & -3 \\
0 & 1 & 0 & 3
\end{array}\right| & \xlongequal[E M: C 1]{ } 0 \cdot+|*|+0 \cdot-|*|+3 \cdot+\left|\begin{array}{rrr}
-1 & 3 & 0 \\
-3 & 2 & -3 \\
1 & 0 & 3
\end{array}\right|+0 \cdot-|*| \\
& =3 \cdot[(-6)+(-9)+(0)-(0)-(0)-(-27)]=36 .
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
\left|\begin{array}{rrrr}
0 & -1 & 3 & 0 \\
0 & -3 & 2 & -3 \\
3 & -1 & -3 & -3 \\
0 & 1 & 0 & 3
\end{array}\right| & \xlongequal[\substack{1) \leftrightarrow(3)}]{(2) \leftrightarrow(4)}\left|\begin{array}{rrrr}
3 & -1 & -3 & -3 \\
0 & 1 & 0 & 3 \\
0 & -1 & 3 & 0 \\
0 & -3 & 2 & -3
\end{array}\right| \xlongequal[\substack{(3)+(2) \\
(4)+3(2)}]{ }\left|\begin{array}{rrrr}
3 & -1 & -3 & -3 \\
0 & 1 & 0 & 3 \\
0 & 0 & 3 & 3 \\
0 & 0 & 2 & 6
\end{array}\right| \\
& \xlongequal[(3)-(4)]{ }\left|\begin{array}{rrrr}
3 & -1 & -3 & -3 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -3 \\
0 & 0 & 2 & 6
\end{array}\right| \xlongequal[\text { (4) }-2(3)]{ }\left|\begin{array}{rrrr}
3 & -1 & -3 & -3 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 12
\end{array}\right| \\
& =(3 \cdot 1 \cdot 1 \cdot 12)=36 .
\end{aligned}
$$

Grading for common mistakes: -2 points for not following the +-+- pattern; -10 points for bad row operations; -5 points for not keeping track of the effects of row operations on the determinant; -5 points for bad planning.

MAT 242 Test 1 SOLUTIONS, FORM D

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for y.

$$
\begin{array}{r}
3 x-y=0 \\
-2 x-2 y=3
\end{array}
$$

Solution:

$$
y=\frac{\left|\begin{array}{rr}
3 & 0 \\
-2 & 3
\end{array}\right|}{\left|\begin{array}{rr}
3 & -1 \\
-2 & -2
\end{array}\right|}=\frac{9}{-8}=-\frac{9}{8} .
$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.
2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.
(a) $\left[\begin{array}{lll|r}\mathbf{1} & 0 & 0 & -2 \\ 0 & \mathbf{1} & 0 & 3 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

Exactly one
(b) $\left[\begin{array}{lll|r}1 & 1 & 0 & -3 \\ 0 & 0 & 1 & -1 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll|l}1 & 0 & \mathbf{1} & 1 \\ 0 & 1 & \mathbf{2} & 0 \\ 0 & 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} & 0\end{array}\right]$
infinitely many

Solution: Correct answers are given above, and the relevant entries are in boldface.
Grading: +3 points for the correct answer, +2 points for indicating the entries (or for a brief explanation). Grading for common errors: -3 points for a wrong answer, -1 points for not indicating the relevant entries.
3. [20 points] Find the inverse of the matrix $\left[\begin{array}{lll}3 & 1 & -1 \\ 4 & 2 & -1 \\ 2 & 1 & -1\end{array}\right]$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
3 & 1 & -1 & 1 & 0 & 0 \\
4 & 2 & -1 & 0 & 1 & 0 \\
2 & 1 & -1 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow{(1)-(3)}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
4 & 2 & -1 & 0 & 1 & 0 \\
2 & 1 & -1 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[(2)-4(1)]{ } \\
& \xrightarrow[(3)-2(1)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 2 & -1 & -4 & 1 & 4 \\
0 & 1 & -1 & -2 & 0 & 3
\end{array}\right] \\
& \xrightarrow[(3)-2(2)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & -2 & 0 & 3 \\
0 & 2 & -1 & -4 & 1 & 4
\end{array}\right] \\
& \xrightarrow{(2)+(3)}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & -2 & 0 & 3 \\
0 & 0 & 1 & 0 & 1 & -2
\end{array}\right] \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -2 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & -2
\end{array}\right] }
\end{aligned}
$$

The inverse is thus $\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 1 \\ 0 & 1 & -2\end{array}\right]$.
Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.
4. [15 points] Solve the system of linear equations

$$
\begin{array}{r}
53 x_{1}+10 x_{2}-27 x_{3}+11 x_{4}=0 \\
-20 x_{1}-3 x_{2}+10 x_{3}-4 x_{4}=2 \\
10 x_{1}+2 x_{2}-5 x_{3}+2 x_{4}=4 \\
-4 x_{1}-x_{2}+2 x_{3}-x_{4}=2
\end{array}
$$

using the fact that $\left[\begin{array}{rrrr}53 & 10 & -27 & 11 \\ -20 & -3 & 10 & -4 \\ 10 & 2 & -5 & 2 \\ -4 & -1 & 2 & -1\end{array}\right]^{-1}=\left[\begin{array}{rrrr}-1 & -1 & 3 & -1 \\ 0 & 1 & 2 & 0 \\ -2 & -2 & 5 & -4 \\ 0 & -1 & -4 & -5\end{array}\right]$. (Other methods may result in the loss of points.)

Solution: Use the $X=A^{-1} B$ formula:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
53 & 10 & -27 & 11 \\
-20 & -3 & 10 & -4 \\
10 & 2 & -5 & 2 \\
-4 & -1 & 2 & -1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{rrrr}
-1 & -1 & 3 & -1 \\
0 & 1 & 2 & 0 \\
-2 & -2 & 5 & -4 \\
0 & -1 & -4 & -5
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
8 \\
10 \\
8 \\
-28
\end{array}\right]
$$

Grading: +5 points for the $A^{-1} B$ formula, +5 points for substituting $A^{-1},+5$ points for doing the multiplication. Grading for common mistakes: -5 points for $A B ;+7$ points (total) for using another method and getting the correct answer.
5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_{1}, x_{2}, x_{3}, and x_{4}.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 3 & 0 & 8 \\
0 & 1 & 2 & 0 & 5 \\
0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: There is only one variable that does not have a pivot in its column: x_{3}. It is a free variable, so set $x_{3}=s$. The rows of the matrix represent the equations

$$
\begin{aligned}
x_{1}+3 x_{3} & =8 \\
x_{2}+2 x_{3} & =5 \\
x_{4} & =-3
\end{aligned} \quad \text { so } \quad \begin{aligned}
& x_{1}=8-3 x_{3}=8-3 r \\
& x_{2}=5-2 x_{3}=5-2 r
\end{aligned}
$$

so the parameterization is

$$
\begin{aligned}
& x_{1}=8-3 r \\
& x_{2}=5-2 r \\
& x_{3}=r \\
& x_{4}=-3 \\
& \text { where } r \text { can be any real number }
\end{aligned}
$$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.
6. [20 points] Find $\left|\begin{array}{rrrr}0 & 2 & 0 & -1 \\ 2 & 1 & -2 & -3 \\ 0 & -3 & -1 & 3 \\ 2 & 0 & 0 & 0\end{array}\right|$

Solution: Two methods will be presented below. First, expansion by minors, followed by Sarrus's method. (* denotes a matrix whose entries are unimportant.)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
0 & 2 & 0 & -1 \\
2 & 1 & -2 & -3 \\
0 & -3 & -1 & 3 \\
2 & 0 & 0 & 0
\end{array}\right| & \xlongequal{E M: R 4} 2 \cdot-\left|\begin{array}{rrr}
2 & 0 & -1 \\
1 & -2 & -3 \\
-3 & -1 & 3
\end{array}\right|+0 \cdot+|*|+0 \cdot-|*|+0 \cdot+|*| \\
& =-2[(-12)+(0)+(1)-(-6)-(0)-(6)]=22 .
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
&\left|\begin{array}{rrrr}
0 & 2 & 0 & -1 \\
2 & 1 & -2 & -3 \\
0 & -3 & -1 & 3 \\
2 & 0 & 0 & 0
\end{array}\right| \xlongequal[(1) \leftrightarrow(4)]{=}(-1) \cdot\left|\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
2 & 1 & -2 & -3 \\
0 & -3 & -1 & 3 \\
0 & 2 & 0 & -1
\end{array}\right| \xlongequal[(2)-(1)]{ }(-1) \cdot\left|\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 1 & -2 & -3 \\
0 & -3 & -1 & 3 \\
0 & 2 & 0 & -1
\end{array}\right| \\
& \xlongequal[\substack{(3)+3(2)}]{ }(-1) \cdot\left|\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 1 & -2 & -3 \\
0 & 0 & -7 & -6 \\
0 & 0 & 4 & 5
\end{array}\right| \xlongequal[(3)+2(4)]{ }(-1) \cdot\left|\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 1 & -2 & -3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 4 & 5
\end{array}\right| \\
& \xlongequal[(4)-4(3)]{ }(-1) \cdot\left|\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 1 & -2 & -3 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & -11
\end{array}\right|=(-1) \cdot(2 \cdot 1 \cdot 1 \cdot(-11))=\boxed{22 .}
\end{aligned}
$$

Grading for common mistakes: -2 points for not following the +-+- pattern; -10 points for bad row operations; -5 points for not keeping track of the effects of row operations on the determinant; -5 points for bad planning.

MAT 242 Test 1 SOLUTIONS, FORM E

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for x.

$$
\begin{aligned}
-2 x-3 y & =1 \\
3 x-2 y & =-2
\end{aligned}
$$

Solution:

$$
x=\frac{\left|\begin{array}{rr}
1 & -3 \\
-2 & -2
\end{array}\right|}{\left|\begin{array}{rr}
-2 & -3 \\
3 & -2
\end{array}\right|}=\frac{-8}{13}=-\frac{8}{13} .
$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.
2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.
(a) $\left[\begin{array}{lll|r}\mathbf{1} & 0 & 0 & 2 \\ 0 & \mathbf{1} & 0 & -3 \\ 0 & 0 & \mathbf{1} & -2 \\ 0 & 0 & 0 & 0\end{array}\right]$

Exactly one
(b) $\left[\begin{array}{rrr|r}1 & -\mathbf{3} & 0 & -5 \\ 0 & \mathbf{0} & 1 & 0 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{lllll|r}1 & 3 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{2}\end{array}\right]$

Solution: Correct answers are given above, and the relevant entries are in boldface.
Grading: +3 points for the correct answer, +2 points for indicating the entries (or for a brief explanation). Grading for common errors: -3 points for a wrong answer, -1 points for not indicating the relevant entries.
3. [20 points] Find the inverse of the matrix $\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow{(3)-(1)}\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \\
& \xrightarrow{-(2)}\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \\
& \xrightarrow[(1)+(3)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The inverse is thus $\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1\end{array}\right]$.
Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.
4. [15 points] Solve the system of linear equations

$$
\begin{array}{r}
354 x_{1}+51 x_{2}-77 x_{3}-24 x_{4}=0 \\
-75 x_{1}-11 x_{2}+16 x_{3}+5 x_{4}=2 \\
-44 x_{1}-6 x_{2}+10 x_{3}+3 x_{4}=4 \\
-14 x_{1}-2 x_{2}+3 x_{3}+x_{4}=2
\end{array}
$$

using the fact that $\left[\begin{array}{rrrr}354 & 51 & -77 & -24 \\ -75 & -11 & 16 & 5 \\ -44 & -6 & 10 & 3 \\ -14 & -2 & 3 & 1\end{array}\right]^{-1}=\left[\begin{array}{rrrr}-1 & -3 & -2 & -3 \\ 3 & 8 & 7 & 11 \\ -2 & -6 & -3 & -9 \\ -2 & -8 & -5 & 8\end{array}\right]$. (Other methods may result in the loss of points.)

Solution: Use the $X=A^{-1} B$ formula:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
354 & 51 & -77 & -24 \\
-75 & -11 & 16 & 5 \\
-44 & -6 & 10 & 3 \\
-14 & -2 & 3 & 1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{rrrr}
-1 & -3 & -2 & -3 \\
3 & 8 & 7 & 11 \\
-2 & -6 & -3 & -9 \\
-2 & -8 & -5 & 8
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
-20 \\
66 \\
-42 \\
-20
\end{array}\right]
$$

Grading: +5 points for the $A^{-1} B$ formula, +5 points for substituting $A^{-1},+5$ points for doing the multiplication. Grading for common mistakes: -5 points for $A B ;+5$ points (total) for using another method and getting the correct answer.
5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were x_{1}, x_{2}, x_{3}, and x_{4}.

$$
\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: The variables which do not have pivots in their columns are x_{3} and x_{4}. They are free variables, so set $x_{3}=r$ and $x_{4}=s$. The rows of the matrix represent the equations

$$
\begin{array}{r}
x_{1}+x_{4}=3 \\
x_{2}+2 x_{3}+x_{4}=2
\end{array} \quad \text { so } \quad \begin{aligned}
& x_{1}=3-x_{4}=3-s \\
& x_{2}=2-2 x_{3}+x_{4}=2-2 r-s
\end{aligned}
$$

so the parameterization is

$$
\begin{array}{|l|}
\hline x_{1}=3-s \\
x_{2}=2-2 r-s \\
x_{3}=r \\
x_{4}=s \\
\text { where } r, s \text { can be any real numbers } \\
\hline
\end{array}
$$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.
6. [20 points] Find $\left|\begin{array}{rrrr}0 & 1 & 1 & 2 \\ 0 & 2 & 0 & -2 \\ -3 & 0 & -1 & 3 \\ 0 & -3 & -2 & -2\end{array}\right|$

Solution: Two methods will be presented below. First, expansion by minors, followed by Sarrus's method. (* denotes a matrix whose entries are unimportant.)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
0 & 1 & 1 & 2 \\
0 & 2 & 0 & -2 \\
-3 & 0 & -1 & 3 \\
0 & -3 & -2 & -2
\end{array}\right| & \xlongequal[E M: C 1]{ } 0 \cdot+|*|+0 \cdot-|*|+(-3) \cdot+\left|\begin{array}{rrr}
1 & 1 & 2 \\
2 & 0 & -2 \\
-3 & -2 & -2
\end{array}\right|+0 \cdot-|*| \\
& =(-3)[(0)+(6)+(-8)-(0)-(4)-(-4)]=6 .
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
0 & 1 & 1 & 2 \\
0 & 2 & 0 & -2 \\
-3 & 0 & -1 & 3 \\
0 & -3 & -2 & -2
\end{array}\right| \xlongequal[(1) \leftrightarrow(3)]{ }(-1) \cdot\left|\begin{array}{rrrr}
-3 & 0 & -1 & 3 \\
0 & 2 & 0 & -2 \\
0 & 1 & 1 & 2 \\
0 & -3 & -2 & -2
\end{array}\right| \xlongequal[(2) \leftrightarrow 3]{ } \xlongequal{ }\left|\begin{array}{rrrr}
-3 & 0 & -1 & 3 \\
0 & 1 & 1 & 2 \\
0 & 2 & 0 & -2 \\
0 & -3 & -2 & -2
\end{array}\right| \\
& \xlongequal[\substack{(3)-2(2) \\
(4)+3(2)}]{ }\left|\begin{array}{rrrr}
-3 & 0 & -1 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & -2 & -6 \\
0 & 0 & 1 & 4
\end{array}\right| \xlongequal[(3) \leftrightarrow(4)]{ }(-1) \cdot\left|\begin{array}{rrrr}
-3 & 0 & -1 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & -2 & -6
\end{array}\right| \\
& \xlongequal[(4)+2(3)]{ }(-1) \cdot\left|\begin{array}{rrrr}
-3 & 0 & -1 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 2
\end{array}\right|=(-1) \cdot(-3 \cdot 1 \cdot 1 \cdot 2)=6 .
\end{aligned}
$$

Grading for common mistakes: -2 points for not following the +-+- pattern; -10 points for bad row operations; -5 points for not keeping track of the effects of row operations on the determinant; -5 points for bad planning.

MAT 242 Test 1 SOLUTIONS, FORM F

1. [15 points] Use Cramer's Rule to solve the following system of linear equations for y.

$$
\begin{aligned}
2 x+3 y & =-2 \\
-3 x-y & =1
\end{aligned}
$$

Solution:

$$
y=\frac{\left|\begin{array}{rr}
2 & -2 \\
-3 & 1
\end{array}\right|}{\left|\begin{array}{rr}
2 & 3 \\
-3 & -1
\end{array}\right|}=\frac{-4}{7}=-\frac{4}{7}
$$

Grading: +5 points for each determinant, +5 points for combining them. Grading for common mistakes: +5 points (total) for another method which gave the correct answer; +3 points (total) for another method that gave the wrong answer.
2. [15 points] How many solutions does each of the following systems of linear equations have? Circle the entries which led you to your conclusion.
(a) $\left[\begin{array}{rlllr|r}1 & 0 & 0 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 & -3 & 2 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & 2 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1}\end{array}\right]$

None
(b) $\left[\begin{array}{llll|r}\mathbf{1} & 0 & 0 & 0 & -2 \\ 0 & \mathbf{1} & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 2 \\ 0 & 0 & 0 & \mathbf{1} & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll|r}1 & \mathbf{3} & 0 & -6 \\ 0 & \mathbf{0} & 1 & -3 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 & 0\end{array}\right]$

Solution: Correct answers are given above, and the relevant entries are in boldface.
Grading: +3 points for the correct answer, +2 points for indicating the entries (or for a brief explanation). Grading for common errors: -3 points for a wrong answer, -1 points for not indicating the relevant entries.
3. [20 points] Find the inverse of the matrix $\left[\begin{array}{ccc}-3 & 0 & 1 \\ -5 & 1 & 3 \\ -2 & 0 & 1\end{array}\right]$ using Gauss-Jordan Elimination.

Solution: Typical row operations are shown below.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
-3 & 0 & 1 & 1 & 0 & 0 \\
-5 & 1 & 3 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow[(1)-2(3)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & -2 \\
-5 & 1 & 3 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow[\begin{array}{l}
(2)+5(1) \\
(3)+2(1)
\end{array}]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & -2 \\
0 & 1 & -2 & 5 & 1 & -10 \\
0 & 0 & -1 & 2 & 0 & -3
\end{array}\right] \\
& \xrightarrow[-(3)]{ }\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & -2 \\
0 & 1 & -2 & 5 & 1 & -10 \\
0 & 0 & 1 & -2 & 0 & 3
\end{array}\right] \\
& \xrightarrow[\begin{array}{l}
(1)+(3) \\
(2)+2(3)
\end{array}]{l}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & -4 \\
0 & 0 & 1 & -2 & 0 & 3
\end{array}\right]
\end{aligned}
$$

The inverse is thus $\left[\begin{array}{rrr}-1 & 0 & 1 \\ 1 & 1 & -4 \\ -2 & 0 & 3\end{array}\right]$.
Grading: +5 points for the set-up, +10 points for the row operations, +5 points for indicating the answer. Grading for common mistakes: -7 points for bad row operations; -5 points for only doing Gaussian Elimination; +10 points (total) for using another method correctly; +5 points (total) for using another method incorrectly.
4. [15 points] Solve the system of linear equations

$$
\begin{array}{r}
28 x_{1}-6 x_{2}-2 x_{3}-x_{4}=0 \\
105 x_{1}-20 x_{2}-9 x_{3}-6 x_{4}=2 \\
60 x_{1}-12 x_{2}-5 x_{3}-3 x_{4}=4 \\
-24 x_{1}+5 x_{2}+2 x_{3}+x_{4}=2
\end{array}
$$

using the fact that $\left[\begin{array}{rrrr}28 & -6 & -2 & -1 \\ 105 & -20 & -9 & -6 \\ 60 & -12 & -5 & -3 \\ -24 & 5 & 2 & 1\end{array}\right]^{-1}=\left[\begin{array}{rrrr}1 & 1 & -3 & -2 \\ 3 & 4 & -12 & -9 \\ 3 & 0 & 1 & 6 \\ 3 & 4 & -14 & -14\end{array}\right]$. (Other methods may result in the loss of points.)

Solution: Use the $X=A^{-1} B$ formula:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{rrrr}
28 & -6 & -2 & -1 \\
105 & -20 & -9 & -6 \\
60 & -12 & -5 & -3 \\
-24 & 5 & 2 & 1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & -3 & -2 \\
3 & 4 & -12 & -9 \\
3 & 0 & 1 & 6 \\
3 & 4 & -14 & -14
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
-14 \\
-58 \\
16 \\
-76
\end{array}\right]
$$

Grading: +5 points for the $A^{-1} B$ formula, +5 points for substituting $A^{-1},+5$ points for doing the multiplication. Grading for common mistakes: -5 points for $A B ;+5$ points (total) for using another method and getting the correct answer.
5. [15 points] Parameterize the solutions to the system of linear equations whose matrix, in reduced row echelon form, is below. Assume that the original variables were $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}.

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & 0 & 0 & 2 & -4 \\
0 & 1 & -1 & 0 & -2 & 8 \\
0 & 0 & 0 & 1 & 3 & -4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: The variables which do not have pivots in their columns are x_{3} and x_{5}. They are free variables, so set $x_{3}=r$ and $x_{5}=s$. The rows of the matrix represent the equations

$$
\begin{array}{rlrl}
x_{1}+2 x_{5} & =-4 \\
x_{2}-x_{3}-2 x_{5} & =8 \\
x_{4}+3 x_{5} & =-4 & \text { so } & \\
x_{1}=-4-2 x_{5}=-4-2 s \\
x_{2}=8+x_{3}+2 x_{5}=8+r+2 s \\
x_{4}=-4-3 x_{5}=-4-3 s
\end{array}
$$

so the parameterization is

$$
\begin{aligned}
& x_{1}=-4-2 s \\
& x_{2}=8+r+2 s \\
& x_{3}=r \\
& x_{4}=-4-3 s \\
& x_{5}=s \\
& \text { where } r, s \text { can be any real numbers }
\end{aligned}
$$

Grading: +5 points for finding the free variables, +5 points for finding the equations for the lead variables, +2 points for writing them together, +3 points for including the "where ... can be any real numbers" condition.
6. [20 points] Find $\left|\begin{array}{rrrr}2 & -3 & -2 & 1 \\ 2 & -2 & 3 & -1 \\ 0 & -3 & -1 & -3 \\ 0 & 3 & 0 & 0\end{array}\right|$

Solution: Two methods will be presented below. First, expansion by minors, followed by Sarrus's method. (* denotes a matrix whose entries are unimportant.)

$$
\begin{aligned}
\left|\begin{array}{rrrr}
2 & -3 & -2 & 1 \\
2 & -2 & 3 & -1 \\
0 & -3 & -1 & -3 \\
0 & 3 & 0 & 0
\end{array}\right| & \xlongequal[E M: R 4]{ } 0 \cdot-|*|+3 \cdot+\left|\begin{array}{rrr}
2 & -2 & 1 \\
2 & 3 & -1 \\
0 & -1 & -3
\end{array}\right|+0 \cdot-|*|+0 \cdot+|*| \\
& =3[(-18)+(0)+(-2)-(0)-(2)-(12)]=-102 .
\end{aligned}
$$

Gaussian elimination:

$$
\begin{aligned}
\left|\begin{array}{rrrr}
2 & -3 & -2 & 1 \\
2 & -2 & 3 & -1 \\
0 & -3 & -1 & -3 \\
0 & 3 & 0 & 0
\end{array}\right| & \xlongequal[(2)-(1)]{ }\left|\begin{array}{rrrr}
2 & -3 & -2 & 1 \\
0 & 1 & 5 & -2 \\
0 & -3 & -1 & -3 \\
0 & 3 & 0 & 0
\end{array}\right| \xlongequal[(3)+3(2)]{(4)-3(2)}\left|\begin{array}{rrrr}
2 & -3 & -2 & 1 \\
0 & 1 & 5 & -2 \\
0 & 0 & 14 & -9 \\
0 & 0 & -15 & 6
\end{array}\right| \\
& \xlongequal[(3)+(4)]{ }\left|\begin{array}{rrrr}
2 & -3 & -2 & 1 \\
0 & 1 & 5 & -2 \\
0 & 0 & -1 & -3 \\
0 & 0 & -15 & 6
\end{array}\right| \xlongequal[(4)-15(3)]{ }\left|\begin{array}{rrrr}
2 & -3 & -2 & 1 \\
0 & 1 & 5 & -2 \\
0 & 0 & -1 & -3 \\
0 & 0 & 0 & 51
\end{array}\right| \\
& =2 \cdot 1 \cdot(-1) \cdot 51=-102 .
\end{aligned}
$$

Grading for common mistakes: -2 points for not following the +-+- pattern; -10 points for bad row operations; -5 points for not keeping track of the effects of row operations on the determinant; -5 points for bad planning.

