
FORMULAE THAT WILL BE ON THE FINAL EXAM FINANCE & TRIGONOMETRY FORMULAS

$$\cos^2(x) + \sin^2(x) = 1$$
 $1 + \tan^2(x) = \sec^2(x)$ $\cot^2(x) + 1 = \csc^2(x)$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \begin{cases} \cos^2(x) - \sin^2(x) \\ 2\cos^2(x) - 1 \\ 1 - 2\sin^2(x) \end{cases}$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

$$\tan\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1 + \cos(x)}{2}}$$

$$\tan\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1 - \cos(x)}{2}}$$

$$\frac{c^2 = a^2 + b^2 - 2ab\cos(C)}{\frac{\sin(A)}{a}} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = Pe^{rt}$$

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}||\cos(\theta)$$

MAT170 – FINAL EXAM – REVIEW

PART I – ALGEBRA

A. Difference quotient - Section 1.3

Find and simplify the difference quotient, $\frac{f(x+h)-f(x)}{h}$, $h \ne 0$, of each of the following functions:

1)
$$f(x) = \frac{1}{3x}$$
 3)

$$f(x) = \frac{1}{3x}$$
 3) $f(x) = 3x^2 + 4x - 8$

2)
$$f(x) = -x^2 + 5x + 9$$

B. Function composition - Section 1.7

- 1. Find $(f \circ g)(x)$ and $(g \circ f)(x)$, where $f(x) = x^2 x + 4$ and g(x) = 2x 3.
- 2. Find $(g \circ f)(x)$, where $f(x) = e^{2x} 1$, and $g(x) = \ln(x+1)$.

C. Inverse functions - Section 1.8

Find the inverse of each of the following functions:

1)
$$f(x) = \frac{4x}{3+x}$$

3)
$$f(x) = 4 + e^{5x-2}$$

2)
$$f(x) = \ln(3x-2)-4$$

4)
$$f(x) = x^3 - 10$$

D. Zeros of polynomials - Section 2.3-2.5

Find the zeros of each of the following functions:

1)
$$f(x) = -x^3 + x^2 + 2x$$

2)
$$f(x) = x^3 - x^2 + 9x - 9$$

E. Domains of function s- Sections 1.2-1.3

Find the domain of each of the following functions:

1)
$$f(x) = \frac{1-x}{x^2-9}$$

2)
$$f(x) = \frac{x+1}{3x-2}$$

3)
$$f(x) = \log(2x+1)$$

4)
$$f(x) = \sqrt{8-2x}$$

F. Exponential equations – Section 3.4

Solve each of the following exponential equations. Give the answer, first in terms of natural logarithms, and then a decimal approximation to two decimal places:

1)
$$3^{2x} - 3^x - 42 = 0$$

3)
$$e^{2x} - 7e^x - 18 = 0$$

2)
$$5^x = 3^{x-1}$$

G. Logarithmic equations – Section 3.4

Solve each of the following logarithmic equations.

1)
$$\log_2(x) + \log_2(x-7) = 3$$
.

3)
$$\ln(x) - \ln(x-2) = 1$$

2)
$$\log_2(3x-1) = 5$$

H. Application of rational functions – Section 2.6

- 1) Suppose that an insect population in millions is modeled by $f(x) = \frac{10x+1}{0.2x+1}$, where $x \ge 0$ is in months. What happens to the insect population after a long time?
- 2) A company that manufactures calculators has determined that the average cost for producing x calculators is $\overline{C}(x) = \frac{15000 + 20x}{x}$ dollars. In the long run, what value does the average cost approach?

- **I.** Application of quadratic functions Section 2.2
 - 1) An astronaut on the Moon throws a baseball upward. The height of the ball is approximated by the function $h(t) = -2.7t^2 + 30t + 6.5$ feet, t is the time in seconds after the ball was thrown. When does the baseball reach its maximum height? What is the maximum height of the baseball?
 - 2) The percent increase for in-state tuition at Arizona public universities during the years 1990 – 2002 can be modeled by $f(x) = 0.156x^2 - 2.05x + 10.2$, where x=0 represents 1990. What was the minimum percentage increase in tuition?
- **J.** Application of exponential functions Section 3.4
 - 1) How long will it take for \$5000 to grow to \$8400 at an interest rate of 6% compounded a) quarterly? b) monthly? c) continuously?
 - 2) Find the interest rate needed for \$3000 to accumulate to \$10000 in an account where the interest is compounded monthly for 7 years.
- **K.** Transformations Section 1.6
- 1) Find the function g(x) after all of the following transformations are applied to x^2 .
 - a. Reflect about the x-axis
 - b. Shift left 5 units
 - c. Shift up 3 units

PART II – TRIGONOMETRY

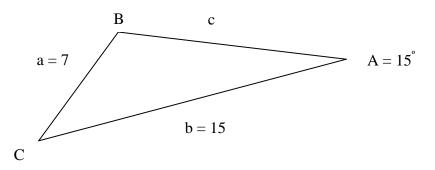
- **A.** Domain, ranges, and graph of trig functions Sections 4.5-4.6
 - 1) What is the domain and range of cos(x)?
 - 2) What is the domain and range of $\csc(x)$?
 - 3) What is the domain and range of tan(x)?
 - 4) Suppose $y = -3\cos(2x + \pi)$; Find the amplitude, period and phase shift.
- **B.** Pythagorean identity, summation, difference, double angle, half-angle formula problems – Sections 5.1-5.3

Given $\sin(\alpha) = -\frac{3}{8}$, $\pi < \alpha < \frac{3\pi}{2}$ and $\cos(\beta) = \frac{3}{5}$, $0 < \beta < \frac{\pi}{2}$ find the following 1) $\cos(\alpha)$ 2) $\sec(\alpha)$ 3) $\tan(\alpha)$ 4) $\cot(\alpha)$ 5) $\csc(\alpha)$

- 6) $\cos(2\alpha)$ 7) $\sin(2\alpha)$ 8) $\tan(2\alpha)$ 9) $\cos\left(\frac{\alpha}{2}\right)$ 10) $\sin\left(\frac{\alpha}{2}\right)$ 11) $\sin(\alpha \beta)$ 12) $\cos(\alpha + \beta)$

C. *Inverse trigonometric functions – Section 4.7*

- 1) Find an algebraic expression for $\sin(\cos^{-1}(3x))$, where 3x is positive and in the domain of the given inverse function.
- 2) Find an algebraic expression for $cos(tan^{-1}(x))$, where x is positive and in the domain of the given inverse function.
- **D.** *Trig identities Section 5.1* Verify the trigonometric identities.


1)
$$\cos(x)\cot(x) + \sin(x) = \csc(x)$$
 3) $\sin(2x)\sin(x) + 2\cos^3(x) = 2\cos(x)$
2) $\frac{\cos(x) + \sin(x) - \sin^3(x)}{\sin(x)} = \cot(x) + \cos^2(x)$

E. Trig equations – Section 5.5

- 1) Solve $\sin(2x) + \sqrt{2}\cos x = 0$ in the interval $[0,2\pi)$.
- 2) Solve $2\sin^2 x 5\sin x + 2 = 0$ in the interval $[0,2\pi)$.

F. Arc length – Section 4.1

- 1. Algiers, Algeria and Barcelona, Spain lie on the same line of longitude. Algiers is located at 36.8°N latitude and Barcelona is located at 41.4° N latitude. Find the distance between Algiers and Barcelona. Note the radius of the earth is approximately 3960 miles.
- **G.** Law of sines Section 6.1
 - 1) Solve the following triangle:

2) An aircraft is spotted by two observers who are 5000 meters apart. As the airplane passes over the line joining the observers, each observer takes a sighting of the angle of elevation of the airplane. The first observer sights the plane at 40° and the second observer sights the plane at 35° . How far away is the airplane from the first observer?

H. Law of cosines – Section 6.2

- 1) A pilot is flying from Jackson, Michigan, to Chicago, Illinois, a distance of approximately 200 miles. As he leaves Jackson, he flies 20 degrees off course for 50 miles. How far is he then from Chicago?
- 2) A tourist stands 100 ft from the base of the Leaning Tower of Pisa. With the tower leaning away from the observer, the observer looking up at an angle of 52° finds that the distance from the top of the tower to where he is standing is 228 ft. Find the angle the Leaning Tower makes with the ground?
- **I.** Vectors and Dot Product Sections 6.1-6.2

1)
$$\mathbf{v} = 5\mathbf{i} - 4\mathbf{j}, \mathbf{w} = 2\mathbf{i} - \mathbf{j}$$

a)
$$2v + 3w =$$

b)
$$v - 5w =$$

2)
$$\mathbf{v} = 6\mathbf{i} + \mathbf{j}, \mathbf{w} = 2\mathbf{i} - 3\mathbf{j}$$

- a) $\mathbf{v} \cdot \mathbf{w} =$
- **b**) ||v|| =
- c) || 2w ||=
- d) What is the angle between v and w?

ANSWERS

(Some of these answers have the possibility of not being correct)

PART I – ALGEBRA ANSWERS

A. 1)
$$-\frac{1}{3x(x+h)}$$
 2) $-2x+5-h$ 3) $6x+4+3h$

$$(2) -2x+5-h$$

3)
$$6x + 4 + 3h$$

B. 1)
$$(f \circ g)(x) = 4x^2 - 14x + 16, (g \circ f)(x) = 2x^2 - 2x + 5$$

$$2) (g \circ f)(x) = 2x$$

C. 1)
$$f^{-1}(x) = \frac{3x}{4-x}$$
 2) $f^{-1}(x) = \frac{e^{x+4}+2}{3}$

3)
$$f^{-1}(x) = \frac{\ln(x-4)+2}{5}$$
 4) $f^{-1}(x) = \sqrt[3]{x+10}$

- **D.** 1) zeros are 2, 0, -1 2) zeros are 1, 3i, -3i
- **E.** 1) $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

 $2) \ (-\infty, \frac{2}{3}) \cup (\frac{2}{3}, \infty)$

(3.) $\left(-\frac{1}{2},\infty\right)$

- 4) (-∞,4]
- **F.** 1) $x = \log_3(7) = \frac{\ln(7)}{\ln(3)} \approx 1.77$ 2) $x = \frac{\ln(3)}{\ln(3) \ln(5)} \approx -2.15$ 3) $x = \ln(9) \approx 2.197$

- **G.** 1) x = 8
- 2) x = 11
- 3) $x = \frac{2e}{e-1} \approx 3.16$
- **H.** 1) The insect population approaches the size of 50 million.
 - 2) In the long run the average cost approaches 20 dollars.
- **I.** 1) Maximum time is $5\frac{5}{9}$ seconds. Maximum height is $89\frac{5}{6}$ feet.
 - 2) The minimum percentage increase in tuition was approximately 3.47% when x = 6.57.
- **J.** 1) a) 8.71 years b) 8.67 years c) 8.65 years
 - 2) 17.3%
- **K.** 1) $g(x) = -(x+5)^2 + 3$

PART II – TRIGONOMETRY ANSWERS

- **A.** 1) domain $(-\infty,\infty)$; range [-1, 1]
 - 2) domain $\{x | x \neq n\pi\}$ where *n* is an integer.; range $(-\infty, -1] \cup [1, \infty)$
 - 3) domain $\{x | x \neq \frac{\pi}{2} + n\pi\}$ where *n* is an integer.; range $(-\infty, \infty)$
 - 4) Aplitute = 3, Period = $\frac{\pi}{2}$, Phase shift = $-\frac{\pi}{2}$
- **B.** 1) $-\frac{\sqrt{55}}{8}$ 2) $-\frac{8\sqrt{55}}{55}$ 3) $\frac{3\sqrt{55}}{55}$ 4) $\frac{\sqrt{55}}{3}$ 5) $-\frac{8}{3}$

- 6) $\frac{23}{32}$ 7) $\frac{3\sqrt{55}}{32}$ 8) $\frac{3\sqrt{55}}{23}$ 9) $-\frac{\sqrt{8-\sqrt{55}}}{4}$ 10) $\frac{\sqrt{8+\sqrt{55}}}{4}$
- 11) $\frac{-9+4\sqrt{55}}{40}$ 12) $\frac{-3\sqrt{55}+12}{40}$

C. 1)
$$\sqrt{1-9x^2}$$

C. 1)
$$\sqrt{1-9x^2}$$
 2) $\frac{1}{\sqrt{1+x^2}}$

D. methods vary

E. 1)
$$\frac{\pi}{2}$$
, $\frac{3\pi}{2}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ 2) $\frac{\pi}{6}$, $\frac{5\pi}{6}$

F. 1) 318 miles

G. 1)
$$B_1 \approx 33.68^{\circ}$$
 $C_1 \approx 131.32^{\circ}$ $c_1 \approx 20.31$ $B_2 \approx 146.32^{\circ}$ $C_2 \approx 18.68^{\circ}$ $c_2 \approx 8.66$

2) 2969.05 meter

H. 1) distance ≈ 153.968 mile

2) 102.7°

I. 1) a) $16\mathbf{i} - 11\mathbf{j}$ b) $-5\mathbf{i} + \mathbf{j}$

$$\sqrt{37}$$

$$\sqrt{52}$$

2) a) 9 b)
$$\sqrt{37}$$
 c) $\sqrt{52}$ d) $\theta = \cos^{-1} \left(\frac{9}{\sqrt{37}\sqrt{13}} \right) \approx 65.8^{\circ}$