EXAM 3 REVIEW

Trigonometric Functions (Section 4.2)

1. (a) Given that $\sin (t)=\frac{6}{7}$ and t is in quadrant II.

Find the exact value $\cos (\mathrm{t}), \tan (\mathrm{t}), \sec (\mathrm{t}), \csc (\mathrm{t})$, and $\cot (\mathrm{t})$.
(b) Given that $\cos (t)=\frac{-3}{5}$ and t is in quadrant III.

Find the exact value $\sin (\mathrm{t}), \tan (\mathrm{t}), \sec (\mathrm{t}), \csc (\mathrm{t})$, and $\cot (\mathrm{t})$.

Angles and Radian Measures (Section 4.1)

2. (a) Convert the angle -225° to radians. Express answer as a multiple of π.
(b) Convert the angle $\frac{3 \pi}{2}$ radians to degrees.
3. (a) Find a positive angle less than 360° that is coterminal with the angle -760°.
(b) Find a positive angle less than 2π radians that is coterminal with the angle $\frac{17 \pi}{2}$.
4. Find the length of arc on a circle with radius $r=16$ inches intercepted by a central angle $\theta=60^{\circ}$.Round the answer to 2 decimal places.
5. If the length of the arc on a circle of radius 10 cm is 20 cm , find the measure of the central angle in degrees.
6. Draw 620° in standard position. Find a coterminal angle for 620° between 0° and 360°. Find a coterminal angle less than zero for 620°. Find the reference angle for 620°.

Applications (Section 4.3)

7. A telephone pole is 55 feet tall. How long should a guy wire be if it to be attached 15 feet from the top and is to make an angle of 35° with the ground? Give your answer to the nearest tenth of a foot.
8. A plane is flying at an altitude of 9000 m . The pilot finds that the angle of depression to the airport is 20°. Find the distance between a point on the ground directly below the plane and the airport.

Reference Angle (Section 4.3)

9. Find the reference angle for each of the following angles;
a) 210°
b) -250°
c) $\frac{23 \pi}{4}$
d) $-\frac{13 \pi}{3}$

Graphs of Trigonometric Functions (Section 4.5-4.6)

10. (a) Given the function $y=-2 \sin \left(2 x+\frac{\pi}{2}\right)$ find the amplitude, period, and phase shift.
(b) Given the function $y=4 \cos 3 x+\pi$ find the amplitude, period, and phase shift.
11. Find the equation for the graph shown below.

12. (a) Suppose $\sin (-t)=\frac{-1}{2}$ and $\cos (-t)=\frac{\sqrt{3}}{2}$, find $\tan (\mathrm{t})$
(b) Suppose $\sin (-t)=-0.32$ find $\csc (\mathrm{t})$.
13. (a) Graph the function $f(x)=2 \sec (x)$ to determine the range of $f(x)$.
(b) Graph the function $g(x)=3 \csc (x)$ to determine the range of $g(x)$.

Inverse Trigonometric Functions (Section 4.7)
Find the exact value of each of the following:
14. $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
15. $\cos \left[\tan ^{-1}\left(\frac{2}{3}\right)\right]$
16. $\tan \operatorname{los}^{-1} x$,
17. $\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]$
18. $\cos ^{-1}$ ©os $35^{\circ}{ }^{-}$
19. $\sin ^{-1}\left[\sin \left(\frac{7 \pi}{6}\right)\right]$
20. $\cos \left(\sin ^{-1}\left(\frac{x}{3}\right)\right)$
21. $\tan \left(\operatorname{in}^{-1} x^{-2}\right.$

Verifying Trigonometric Identities (Section 5.1)

Verify each trigonometric identity:
22. $(\cos (\theta)-\sin (\theta))^{2}+(\cos (\theta)+\sin (\theta))^{2}=2$
23. $\frac{\tan (\theta) \cdot \cot (\theta)}{\csc (\theta)}=\sin (\theta)$
24. $\tan (\theta)+\frac{\cos (\theta)}{1+\sin (\theta)}=\sec (\theta)$
25. $\cot (x)+\tan (x)=\sec (x) \csc (x)$
26. $(\sec (x)-\tan (x))^{2}=\frac{1-\sin (x)}{1+\sin (x)}$
27. $\frac{1-\cot (x)}{\cos (x)}=\sec (x)-\csc (x)$
28. (Section 4.2) Label the unit circle, i.e. label all the special angles, and the x and y coordinates for the angles.

Applications of exponential equations (Section 3.5):

29. How long will it take any quantity of iodine 131 to decay to 25% of its initial amount, knowing that it decays according to the function $A(t)=A_{0} e^{-.087 t}$, where t is the number of days?
30. The population of Merchantville was 20,000 in 1990 and 25,000 in 1995. If exponential growth is assumed, find a model for the population growth, and then use the model to determine the population in 2008.
31. A sample of 500 grams of radioactive lead 210 decays to polonium 210 according to the function $A(t)=500 e^{-.032 t}$, where t is in years. Find the amount of the sample remaining after
(i) 4 years,
(ii) 8 years.
(iii) Find the half-life.

Sum and Difference Formulas (Section 5.2)

32. Find the exact value of the expression: $\cos \frac{5 \pi}{12} \cos \frac{\pi}{12}+\sin \frac{5 \pi}{12} \sin \frac{\pi}{12}$
33. Find the exact value of the expression: $\cos \left(135^{\circ}+30^{\circ}\right)$
34. Find the exact value of the expression: $\frac{\tan \frac{\pi}{5}-\tan \frac{\pi}{30}}{1+\tan \frac{\pi}{5} \tan \frac{\pi}{30}}$
35. Verify the identity: $\quad \cos \left(x-\frac{\pi}{2}\right)=\sin x$

Answers

1. a) $\cos (t)=-\frac{\sqrt{13}}{7} \quad \tan (t)=-\frac{6}{\sqrt{13}}=-\frac{6 \sqrt{13}}{13} \quad \sec (t)=-\frac{7}{\sqrt{13}}=-\frac{7 \sqrt{13}}{13}$

$$
\csc (t)=\frac{7}{6} \quad \cot (t)=-\frac{\sqrt{13}}{6}
$$

b) $\sin (t)=-\frac{4}{5}$
$\csc (t)=-\frac{5}{4} \quad \sec (t)=-\frac{5}{3}$
$\begin{aligned} & \tan (t)=\frac{4}{3} \quad \cot (t)=\frac{3}{4} \\ & \begin{array}{ll}\text { 3. a) } 320^{\circ} & \text { b) } \frac{\pi}{2}\end{array}\end{aligned}$
2. a) $-\frac{5 \pi}{4}$
b) 270°
4. 16.76 cm 5. 114.59°
6.
 coterminal angles: $260^{\circ},-100^{\circ}$ reference angle: 80°
7. 69.7 feet
8. 24727.3 m
9. a) 30°
b) 70°
c) $\frac{\pi}{4}$ d) $\frac{\pi}{3}$
10. a) amplitude $=2$, period $=\pi$, phase shift $=\frac{\pi}{4}$ to the left
b) amplitude $=4$, period $=\frac{2 \pi}{3}$, phase shift $=\frac{\pi}{3}$ to the left
11. $-5 \sin \left(\frac{\pi}{3} x\right)$ or $5 \sin \left(\frac{\pi}{3}<-3\right)$ or $5 \sin \left(\frac{\pi}{3}+3\right)$ or $5 \cos \left(\frac{\pi}{3}(x-4.5)\right)$
12. a) $\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$ b) 3.125
13. a) $(-\infty,-2] \cup[2, \infty)$
b) $(-\infty,-3] \cup[3, \infty)$
14. -60° or $-\frac{\pi}{3}$
15. $\frac{3 \sqrt{13}}{13}$
16. $\frac{\sqrt{1-x^{2}}}{x}$
17. $\frac{\pi}{3}$ or 60°
18. 135° or $\frac{3 \pi}{4}$
19. -30° or $-\frac{\pi}{6}$
20. $\frac{\sqrt{9-x^{2}}}{3}$
21. $\frac{3 x}{\sqrt{1-9 x^{2}}}$

Verifying Trigonometric Identities

Methods may vary.

28. THE UNIT CIRCLE

29. 15.93 days
30. $P=20,000 e^{.044629 t} ; \quad 44,658$
31. i) 439.93 gm ii) 387.07 gm iii) $\frac{\ln (2)}{k}=\frac{\ln (2)}{0.032}=21.66$ years
$\begin{array}{lll}\text { 32. } 1 / 2 & \text { 33. }-\frac{1}{4} \sqrt{2}(\sqrt{3}+1) & \text { 34. } \frac{\sqrt{3}}{3}\end{array} \quad$ 35. Methods may vary.

