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Introduction: 
Diabetes is one of the most prominent diseases in the world. In 2015, approximately 30.3 

million American had diabetes, and of those 30.3 million, 7.2 million were undiagnosed 
(“Diabetes”). Diagnosing a person with diabetes is not always accurate, depending on the 
method of diagnosis used. Some methods can lead to false positive, where a person is diagnosed 
as diabetic when they are not, or false negative when they are not diagnosed with diabetes when 
they are in fact diabetic. The two methods currently used to confirm diagnosis are testing the 
A1C, which produces an average blood glucose level for the past 2 or 3 months, and testing for 
the presence of IAA, IA-2A, ICA and GAD antibodies, which attack the insulin-producing cells 
of the pancreas. We will use kNN and weighted kNN using physiological characteristics to 
predict diagnosis. 

Classification is a very common method used in data analysis. It assigns a new data point, 
vector, or matrix to a group or a ‘class’ by comparing it to already classified data. Classification 
can be done using many methods. K nearest neighbors, or kNN, is one of the methods or 
algorithms used to classify data.This method finds the nearest classified points to the unclassified 
data point, and compares the number of points belonging to one class over the other(s). K is the 
number of points considered in this classification. If the majority of the points belong to one 
class, then the unclassified data point belongs to that class k is the number of data points 
considered when ranking the distances.  

Weighted kNN does not depend on the number of closer points as seen with the regular 
kNN. It assigns more weight to the distances between the unclassified data point and the 
classified data points. This method classifies a data point by calculating the distance between it 
and the nearest data points. These distances are then ranked from smallest to largest, where the 
smallest distances indicate the closest data points to the unclassified data point. If the 
unclassified data point has more points of one class closer to it than the other, it is then classified 
as the former. This gives a more reliable result as the nearest neighbors could possibly vary in 
distances, which would affect the result if the regular kNN method was used. These distances are 
calculated using norms. Different norms can also affect the classification as they might give 
different results or distances.  

For this project, the classifications or results obtained using regular kNN and the weight 
kNN are compared to see which are more accurate. The data set used was obtained from 
Kaggle.com and was collected by the National Institute of Diabetes and Digestive and Kidney 
Diseases as a part of the Pima Indian Diabetes database (Jagadish). All the data points were also 
obtained from females of age 21 and above. The two classes used in this classification are 
‘diabetic’ and ‘non-diabetic’. The data set uses eight attributes or characteristics to make this 
classification; Pregnancy, Glucose Levels, Blood Pressure, Skin Thickness, Insulin Levels, BMI, 
BMI, and Age. It also includes the true classification of each data point, which will be compared 
to the result of the kNN and weighted kNN to test for their accuracy. 
 



Method: 
In this project, classification accuracy in standard kNN and weighted kNN algorithm 

using different k values and norms are evaluated. Each algorithm was implemented into a 
function and an analysis code was used to visualize the accuracy under different conditions. 

kNN function takes four inputs: ‘Data’ is the matrix of classified data. In this project, it is 
a 693*9 matrix where 693 means the training sample size and 9 indicates the eight attributes 
mentioned in introduction plus one column of true classification.   ‘Newpoint’ is the matrix of 
unclassified data. ‘k’ is the integer representing the number of nearest-neighbor to observe. In the 
nearest-neighbor ( k = 1) approach, the resulting decision boundary is composed of hyperplanes 
that form perpendicular bisector pairs of points from different classes. ‘p’  is the norm for 
calculating distance. In the project, 1, 2, and inf norm were used. Then the norm of each data 
point is calculated according to the assigned p-norm, and is stored in a vector B in an increasing 
order. K nearest classified data point will then be used to help deciding the class of the 
unclassified point. 

The wKNN function calculated the prediction for a set of new points using the weighted 
KNN algorithm. It takes as input the training data called train data, which includes the outcome 
variable as the last column. It also takes as input a matrix of test data, called testdata,which is the 
new points to be predicted on. Then to define the algorithm it also takes as parameters k, which 
is the number of closest neighbors to consider, and normtype which is a numeric value that either 
calls the p-norm for finite integers or inf norm in the case that Inf is passed for this parameter. 
For each row in the test dataset, the function looks at the distance between that point and all the 
rows in the training data (minus the last column). It then identifies the k closest points and it’s 
associated distance. Then the weight for the point i is given by w_i=(1/d_i)/sumk(1/d_k) where 
d_i is the distance between the chosen point i and the point we are fitting and the sum is over all 
k distances. This weight ensures the sum of the weights is equal to 1. Then, the predicted score is 
given by summing over the weights multiplied by the outcome variables (a vector of 0’s and 
1’s). This gives a number between 0 and 1, inclusive. The final prediction is decided to be 1 if 
the score is greater than or equal to 0.5. Otherwise the final prediction is decided to be 1. After 
completing this calculation for all rows in the training data, the wKNN function then returns a 
column vector of 0’s and 1’s corresponding to the outcome of the data from each row in the 
training data.  

Before the data is classified we will normalize the data set. This is done because for 
instance Glucose is around 80 or more and pregnancies are 20 or less, if we want to compare 
these when classifying we must first normalize the data such that every value is between zero 
and one, essentially we would like all variables to have the same weight. To normalize the data 
we will find the mean and standard deviation of each column in the data set, then for each 
element in the column we take the absolute value of the entry minus the mean of the column, we 
then divide by the standard deviation and thus we have a normalized data set. We then split the 
data such that we remove ten percent which is used as our unclassified data or test data, we will 



store the true values of the test data in a separate vector to check accuracy later. The results of 
this can be found in the paragraphs and figures below. 
 
Results: 

The visualization plots below show the true values for each data point in column zero 
(first column of the plot) sorted such that the zeros (red) are grouped together as well as the ones 
(blue). Along the x-axis are different values of k, and the y-axis is the ten percent of the data that 
was removed. Essentially each dot (not in the first column) is a data point that was classified 
using the specified norm and the k value represented on the x-axis with red representing one and 
blue representing zero.  

 

Figure 1: Standard KNN 1-norm Results 

 



 

Figure 2: Standard KNN 2-norm Results 

 
 
 

 

Figure 3: Standard KNN inf-norm Results 



 

 

Figure 4: Weighted KNN 1-norm Results 

 
 

 

Figure 5: Weighted KNN 2-norm Results 



 

 

Figure 6: Weighted KNN inf-norm Results 

 

 
Figure 7: Standard KNN Results 



 
Figure 8: Standard KNN Results with normalized data 

 
Figure 9: Weighted KNN Results 



 
 

Figure 10: Weighted KNN Results with normalized data 
 

 
Figure 7-10 gives us a heat map for accuracy. Using said heat map, we were able to nicely 
represent three-dimensions. Those dimensions being the norms that were used to classify the new 
point - which is our x-axis(x=3 is are infinite norm) -, the number of k-nearest neighbors - we 
want the function to consider which is our y-axis - and the accuracy of our model as a shade of 
color where red means relatively high accuracy and blue means relatively low accuracy. Note the 
previous figure shows blue and red dots for diabetes and not diabetes whereas these figures 
present accuracy; meaning was the new point classified right or it was classified wrong? 700+ 
data points were tested and their accuracies averaged. 
     Interestingly, Figures 1-3 have better accuracy then Figures 2-4. The reason for this is 
because the data for Figures 2-4 was normalized. This normally seems like it would beneficial. 
However, this is only true if you know that every classifying variable is equally important for 
determining how a new point should be classified.  
     For example, if we want to classify a fruit as either an orange or an apple, the variables we 
use to do so are weight, color and "does it have seeds?". In this case, weight and color seem to 
help for classifying and could be considered equally important. Although if we treat "does it 
have seeds" as equally important our results will be heavily flawed since both apple and oranges 
have seeds.  
      With some further testing on which parameters seem to give the best results, it was found 
that glucose, age, and BMI were the only parameter, by themselves, to do better than just 



randomly guessing. When combined, they perform better than when you consider all the 
parameters as seen in the figures below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: 

Using a data set of over seven hundred points each of which contains eight variables and 
a class, we used both the standard and weighted k-nearest neighbors algorithms across several 
norms to classify a set of unknown points. Upon our first tests, which considered all eight 
variables, we found results that were mostly lackluster. We were seeing results just over half 
correct which is really no better than just flipping a coin. As we began to remove variables from 
our model the results got much better, with our best results being just over 70 percent by using 
just glucose for low values of k, and results yielding 78 percent accuracy by using age, glucose 
and BMI for high values of k. What this tells us is that your best bet in predicting whether or not 
a patient is diebetic would be to observe their glucose levels, BMI and to keep in mind the age of 



the patient. The standard and weighted k-nearest neighbors algorithms are just two of many 
classification algorithms, it may be that for this data another algorithm may be a better match 
yielding a better model with a higher accuracy. Therefore, we did some literature review to 
compare our models with other algorithms. In 2008, researchers used the least squares support 
vector machine (LS-SVM) for classification diabetic dataset and got 82% accuracy [2]. Another 
group got a 96.68% accuracy by first using k-means clustering to identify and eliminate 
incorrectly classified instances. Then they used generic algorithm and correlation based feature 
selection (GA-CFS) for relevant features selection. And finally applied kNN using features 
subsets from the second stage as inputs for classification [3]. One other group got an accuracy of 
78% by using support vector machine (SVM) in 2013 [4]. Although our best model  gives us a 
high 70% accuracy in classifying diabetics, many other performances could be done to improve 
the classification result. 
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Dropbox Link to Our Matlab Code: 
 
All code written to produce the results in this report can be found in the following dropbox 
folder. https://www.dropbox.com/sh/3ikl9bg9gkkvaib/AAD7P-d40gBl6NRhgo4ev4zba?dl=0 
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