
Student: Juyoung Choi

Other students: Ziwei Chen

Course: STP 598 (Machine learning)

Program: Statistics MS

Instructor: Robert McCulloch

Date: Fall 2019

Machine Learning Final Project
Juyoung Choi, Ziwei Chen

November 25, 2019

Introduction

This data was extracted from the 1994 Census bureau database by Ronny Kohavi and Barry Becker. It is
a binary response dataset. This document is a research paper to analyze the dataset with four important
methods (Lasso regression, random forest, boosting and Support Vector Machines). We did grid search on
all methods to find the best final model to predict the response. The prediction task is to determine whether
a person makes over 50K a year. If he does, that will consider as “high” class or will consider as “low” class.
Comparing four methods based on plots and results for AUC. Also, we look at the accuracy of the final
model. Since the dataset including many columns, it is a difficult dataset which is also unbalanced. Also, we
tried some resampling methods like SMOTE, ROSE, simple oversampling to resample dataset to balanced
data.

Data

Dataset can be found from “https://www.kaggle.com/uciml/adult-census-income”. It is a classification social
dataset with one binary response. Total 16383 observations with 14 attributes and one response.

Variable Description
age continuous.
workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked.
fnlwgt continuous.
education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc,

9th, 7th-8th, 12th, Masters,1st-4th, 10th, Doctorate, 5th-6th, Preschool.
education-num continuous.
marital-status Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse.
occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,

Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical,
Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv,
Armed-Forces.

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
sex Female, Male.
capital-gain continuous.
capital-loss continuous.
hours-per-week continuous.
native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran,
Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal,
Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia,
Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador,
Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

income >50K, <=50K

1

https://www.kaggle.com/uciml/adult-census-income

Clean and Processing Data

We spent a lot of time here. But this part is very interesting. The dataset is not clean with missing values
and it is complicated including both factor variables and continuous variables. Each factor variable contains
several levels which make our data clean difficult. Thus, recoding to the factor variables is very important
to our research. Also, information to some columns are overlapped. Besides, the dataset is unbalanced and
the values for numerical variables have a large range. These items will make huge impacts to the results
need to be normalized. In machine learning, if values are not numeric, that will become difficult to do future
research. Here is a very vital part that use Dummy variable to deal with such data. For example, we can
make factors into numerical value.

1. Recode Nominal Variables

• income: <=50K = 0, >50K = 1
• workclass: Private =1, State-gov =2, Federal-gov =3, Self-emp-not-inc =4, Self-emp-inc =5, Local-

gov =6, Without-pay =7, Never-worked =8
• marital status: Widowed =1, Divorced =2, Separated =3, Never-married =4, Married-civ-spouse

=5, Married-AF-spouse =6, Married-spouse-absent =7
• relationships: Not-in-family =1, Unmarried =2, Own-child =3, Other-relative =4, Husband =5,

Wife =6.
• occupation: delete, no recoding. Since it has fourteen levels in this factor. And we cannot give

numerical value like education to it. Because we can don’t have any reasons to rank it. Every occupation
is even. People are even when they are born. And if we give 0-13 value to divide it into fourteen
categories, it is too complicated which have no much meaning to our results.

• fnlwgt: delete it. Not relevant to the data.
• education: delete, no recoding. Another column named “Education-num” is the numerical value for

this column. They are overlapped. Person has higher education background will get higher values.
From 1 to 16.

• race: White =1, Black =2, Asian-Pac-Islander =3, Amer-Indian-Eskimo =4, Other =5 It is not a
rank, we still consider it as nominal variable, just divide it into five categories to see if race has effects
to income.

• sex: Female =1, male =2
• native country: United-States=1, all other will consider as 2 There are many levels in this factor.

We just want to see residents and foreigners. That’s why we only divided it into two groups.

2. Delete Missing Values

Almost every column contains missing value. The best way to do is dismiss such observation rather than
just delete the column or the row. Also, observation who doesn’t work will be delete from the dataset.

3. Divide Data into Training and Testing Datasets

• 75% : training data, 25% : test data

4. Create dummy variables

It is converting a categorical variable to as many binary variables as here are categories. Our data is
complicated, and many columns come with factors. How do deal with them? The good way is to do dummy
variable. After this process, all attributes become numerical value.

2

5. Scale Dataset
We normalized the continuous variables in both training and test. Because their values are in a wide range,
which will affect our results. After normalizing, values of AUC were improved.

6. Randomize Dataset
For avoiding 0 and 1 are clustering together, we randomize dataset, in both training and test.

7. Resampling Training Dataset
This step should do after normalizing and randomizing. We tried SMOTE, ROSE, Oversampling, Undersam-
pling and Bothsampling. No one will improve AUC. Our training dataset consists of 30% “1” and 70% “0”,
not an extremely unbalanced dataset, just a little. So, we listened to Dr. McCulloch, don’t do resampling.

Machine Learning Methods

A. LASSO Regression

We use lasso regression instead of logistic regression. Because it computes faster and we don’t need to do
stepwise, this step needs a long time and our dataset is not a small dataset. Also stepwise has disadvantages.
For instance, if we use backward stepwise, once the variable was given a zero coefficient, it will be deleted
forever in this step, cannot enter into the next step. We use package named glmnet to obtain lasso regression.
It is a shrinkage method. The package pROC wes used to obtain the ROC (Receiver Operating Characteristic)
curve and find AUC.(area under ROC curve). We did grid search to find the best lambda for our final model.

Sensitivity = number of true positives

number of true positives+ number of false negatives

We can calculate AUC (Area Under the ROC Curve) using pROC and AUC for LASSO is 0.901 and Accuracy
is 0.839 from confusionMatrix.

−10 −9 −8 −7 −6 −5 −4 −3

0.
25

0.
30

0.
35

0.
40

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

11 11 11 11 10 9 9 8 7 5 4 3 2 1

best log(lambda) = −9.933

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es
Lift Plot

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curves for LASSO

AUC= 0.901

Figure 1: Parameter selection of λ (top), lift plot (bottom left), ROC plot (bottom right)

B. Random Forests

We use a package named randomForest and caret in R to do it. We do grid search on mtry, maxnodes
and ntrees to choose the best parameter. Parameters are too much, out data is huge. We have to wait for
a long time to obtain each answer, so we only pick up three parameters to do grid search. If you wanted to
do more, the methods are exactly the same.

• ntree: number of trees in the forest
• mtry: Number of candidates draw to feed the algorithm. By default, it is the square of the number of

columns.
• maxnodes: Set the maximum amounts of terminal nodes in the forest Grid search is simple, the model

will be evaluated over all the combination you pass in the function, using cross-validation. Here we
use 10-fold validation.

Step 1: we choose mtry and the best answer is 6.
Step 2: we choose maxnodes and the best answer is 7.
Step 3: we choose ntree and the best answer is 800.
Therefore, our final model appeared. (mtry=6, maxnodes=7, ntree=800)
Still use ROC and lift plot to measure performance. AUC is 0.904 which suggests that sensitivity can get to
90%, it is great. And accuracy is 0.8361 from confusionMatrix.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es
Lift Plot ROC curves for Random Forest

False positive rate
Tr

ue
 p

os
iti

ve
 r

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.904

Figure 2: Lift plot (left), ROC curve (right) for Random Forests

C. Boosting

In this method, we use the package glm in r. Still do cross-validation to choose the best model based on
ROC. (metric=‘ROC’). We use library caret to do grid search based on traincontrol function. This time,
we didn’t pick parameters one by one. We did hyperparameter optimization. We waited for about 2 hours
to get the results, it is very slow. Fortunately, we get the final model with shrinkage factor =0.01, number
of tress= 1500 and the size of each new tree=9. AUC for boosting is 0.939, pretty good. And the accuracy
is 0.8364, also good.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es

Lift Plot ROC curves for Boosting

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.939

Figure 3: Lift plot (left), ROC curve (right) for Boosting

5

D. Support Vector Machines

Our data is binary data, so we want to try SVM, a very popular method for classifier. This wasn’t methods
taught in class, but we read the book. (Chapter 12 of Element) Support Vectors Classifier tries to find the
best hyperplane to separate the different classes by maximizing the distance between sample points and the
hyperplane. There are four itemes which need to do grid search.

1. Kernel represents which model we use. It selects the type of hyperplane used to separate the data.
‘linear’ will use a linear hyperplane (a line in the case of 2D data). ‘rbf’ and ‘poly’ uses a nonlinear
hyper-plane

2. gamma is a parameter for nonlinear hyperplanes. The higher the gamma value, the more the model
tries to fit the training data set, which means more accurate. But large gamma leads to overfitting.

3. C is the penalty parameter of the error term. There is a trade-off between smooth decision boundary
and classifying the training points correctly. C controls trade off. Also, large C represents overfitting.

4. degree is a parameter used when kernel is set to ‘poly’. It is the degree of the polynomial used to
find the hyperplane to split the data. degree=1 means ‘linear’ kernel. Our data is large, we only
tune on two main parameters. After tunning, the best final model came with parameter cost=1 and
gamma=0.03125. And the AUC of SVM is 0.906 and accuracy is 0.8403. Very competitive to compare
with other methods. We use e1071 to tune parameters which is way faster than cross-validation. When
we use 10-fold cross-validation, repeated 5 times for nonlinear kernel. We waited for a whole night, the
result didn’t appear on the next morning.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% tried

%
 o

f s
uc

ce
ss

es

Lift Plot ROC curves for SVM

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC= 0.906

Figure 4: Lift plot (left), ROC curve (right) for SVM

Confusion Matrix

A confusion matrix shows how many observations were correctly or incorrectly classified. The diagonal
elements of Confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predic-
tions. From this table, it appears that SVM is working a little bit better than random forests and boosting.

6

Method Accuracy low high
LASSO 0.8390 low 2462 414

high 198 727
Random Forests 0.8361 low 2511 474

high 149 667
Boosting 0.8364 low 2495 457

high 165 684
SVM 0.8403 low 2463 401

high 206 731

Variable Importance

native.country
workclass

race
age
sex

hours.per.week
marital.status

capital.loss
relationship

education.num
capital.gain

0 25 50 75 100
Importance

F
ea

tu
re

native.country
sex

race
marital.status

workclass
hours.per.week

age
capital.loss

education.num
relationship
capital.gain

0 25 50 75 100
Importance

F
ea

tu
re

Figure 5: Variable importance plot for Random Forest (top) and Boosting (bottom)

Here are the variable importance foreach of the 11 predictor variables obtained from Random Forests and
Boosting for. Not surprisingly, we can see that capital.gain is the most important variable for both ran-
dom forests and boosting. For random forests, top five variables are: capital.gain, education.num,
relationship, capital.loss, martial.status. For Boosting, top five variables are: capital.gain,
relationship, education.num, capital.loss, age. The othes are somewhat less influential.

Comparison of AUC Performance

AUC is the area under the ROC curve and commonly used to ciassify binary data by displaying a curve that
is able to better represent the algorithm’s performance. For much easier to compare AUC for four different
methods: lasso regression, random forest, boosting and SVM. We make a table for them. From table, all the
results is pretty good and suggests a valuable model. Boosting gives highest AUC compared to other three
methods.

7

Method AUC
LASSO 0.901
Random Forests 0.904
Boosting 0.939
SVM 0.906

Further Research

During working, we spent a lot of time on cleaning data and pretreatment on data. Our dataset is complicated
and a little unbalanced. As mentioned before, we tried five methods to resample it. After applying any of
them to the resampling step, the AUC decreases 1 to 2 percentage. we are very confused, so we asked
Dr. McCulloch. He told me not to do resampling. But we are thinking why such resampling methods
decreases AUC, it doesn’t make sense. So, we pick an extremely unbalanced classification dataset to see
if resampling improves AUC, the percentage of the training dataset is almost 2% on “1” and 98% on “0”.
We used SMOTE to resample it. The AUC increased as expected and accuracy increased as well. Why
resampling isn’t useful to our dataset? After looking up much information, we make an assumption that our
dataset is not a serious unbalanced dataset, if we do resampling, the noise for the model will also increase.
The advantages brought by resampling cannot remedy for the disadvantages brought by noise. That’s why
it works on extremely unbalanced dataset. But it is only our assumption, we need to do more work on it to
find the reason. And also, we find that resampling should to be done after normalizing. It is very important.
First normalizing, then resampling will increase AUC about 3 to 4 percentage.

Conclusion

We employed four different machine learning methods, which are lasso regression, random forests, boosting,
and SVM in the census dataset. Variable importance and AUC are both available measurements for judging a
machine learning methods for binary data. Sometimes, accuracy can’t give a reasonable explanation for those
methods for some difficult data. Using variable importance and AUC, we found that all of the methods yield
reasonable AUC values, but boosting has higher AUC than Lasso, Random Forests, and SVM. So we could
conclude that boosting is performing better on average in this dataset. And grid search is very important
to machine learning, with grid search we can get better predictions than with default parameters for each
method.

Please see the following pages for the R script used in this project.

8

rm(list=ls())

library(readxl)

ad = read_excel("Desktop/stp598/final project/adult.xls")

head(ad)

#################### Pretreatment to Dataset #######################

#--------------------------------- delete missing values---#

ad[ad=="?"] = NA

#which(is.na(ad))

delete observations which contain missing values

ad <- na.omit(ad)

check missing values again

which(is.na(ad))

#----------------------- define reponse variable as binary variable (income)----------------

ad[,15]=ifelse(ad[,15]=="<=50K",0,1)

#-------------------------- recode some factors into numeric------------------------------

library(dplyr)

ad$workclass=recode(ad$workclass, 'Private'=1, 'State-gov'=2, 'Federal-gov'=3,

 'Self-emp-not-inc'=4, 'Self-emp-inc'=5,

 'Local-gov'=6, 'Without-pay'=7, 'Never-worked'=8)

ad$marital.status=recode(ad$marital.status,'Widowed'=1, 'Divorced'=2, 'Separated'=3,

 'Never-married'=4,'Married-civ-spouse'=5,'Married-AF-spouse'=6,

 'Married-spouse-absent'=7)

ad$relationship=recode(ad$relationship, 'Not-in-family'=1, 'Unmarried'=2,'Own-child'=3,

 'Other-relative'=4,'Husband'=5, 'Wife'=6)

ad$race=recode(ad$race, 'White'=1,'Black'=2,'Asian-Pac-Islander'=3,'Amer-Indian-Eskimo'=4,

 'Other'=5)

ad$sex=ifelse(ad$sex=="Female",1,2)

ad$native.country=ifelse(ad$native.country=="United-States",1,2)

#--------------------------- define continuous and nominal variables---------------------------------#

#drop useless column

ad$education=NULL

ad$education=NULL

ad$occupation=NULL

ad$occupation=NULL

ad$fnlwgt=NULL

ad$income=as.factor(ad$income)

ad$age=as.numeric(ad$age)

ad$workclass=as.integer(ad$workclass)

ad$education.num=as.numeric(ad$education.num)

ad$marital.status=as.integer(ad$marital.status)

ad$relationship=as.integer(ad$relationship)

ad$race=as.integer(ad$race)

ad$sex=as.integer(ad$sex)

ad$capital.gain=as.numeric(ad$capital.gain)

ad$capital.loss=as.numeric(ad$capital.loss)

ad$hours.per.week=as.numeric(ad$hours.per.week)

ad$native.country=as.integer(ad$native.country)

#------------------------- divide data into training and testing datasets----------------------------#

75% of the sample size

smp_size = floor(0.75 * nrow(ad))

#set the seed to make your partition reproducible

set.seed(123)

train_ind <- sample(seq_len(nrow(ad)), size = smp_size)

Build train and test dataset

ad.train = ad[train_ind,]

ad.test = ad[-train_ind,]

y=ad.train$income

income=ad.test$income

ad.train$income=as.factor(ad.train$income)

One-Hot Encoding

Creating dummy variables is converting a categorical variable to as many binary variables as here are categories.

dummies_model1 = dummyVars(income ~ ., data=ad.train)

dummies_model2 = dummyVars(income ~ ., data=ad.test)

Create the dummy variables using predict. The Y variable (Purchase) will not be present in trainData_mat.

trainData_mat = predict(dummies_model1, newdata = ad.train)

testData_mat = predict(dummies_model2, newdata = ad.test)

Convert to dataframe

ad.train = data.frame(trainData_mat)

ad.train=data.frame(cbind(ad.train,y))# Append the resonse variable

ad.test = data.frame(testData_mat)

ad.test=data.frame(cbind(ad.test,income))# Append the response variable

See the structure of the new dataset

str(ad.train)

str(ad.test)

#--------------------------------------scale the dataset---#

ad.train[] = lapply(ad.train, function(x)

 if(is.numeric(x))

 {

 (x-min(x))/(max(x)-min(x))

 }

 else x)

ad.test[] = lapply(ad.test, function(x)

 if(is.numeric(x))

 {

 (x-min(x))/(max(x)-min(x))

 }

 else x)

#---randomize data---#

ad.test = ad.test[sample(nrow(ad.test)),]

ad.train = ad.train[sample(nrow(ad.train)),]

ad.test = ad.test[sample(nrow(ad.test)),]

ad.train = ad.train[sample(nrow(ad.train)),]

row.names(ad.train)=NULL

row.names(ad.test)=NULL

#---Over Sampling---#

*********** IMPORTANT *********** #

****** Do AFTER Normalized ****** #

********************************* #

#library(DMwR)

#set.seed(9560)

#ad.train=SMOTE(income~., data=as.data.frame(ad.train),k=10,perc.over =200, perc.under = 150)

#table(ad.train$income)

#prop.table(table(ad.train$income))

#-------////////----ROSE----////////-------#

#set.seed(123)

#library(ROSE)

#ad.train=ovun.sample(income~., data=as.data.frame(ad.train), method = "over", N=16268)$data

#--------------####------Grid Search on lamda for lasso regression--------------###

 ## Do cross validation to generate best lamda

load("adult.RData")

x_train.lasso = model.matrix(y~., ad.train)[,-1]

x_test.lasso = model.matrix(income~., ad.test)[,-1]

y_train.lasso=ad.train$y

y_test.lasso=ad.test$income

set.seed(1234)

cv.out = cv.glmnet(x_train.lasso, y_train.lasso,family="binomial", alpha = 1,

 standardize = FALSE ,lambda = NULL, type.measure = "mse")

Fit lasso model on training data

plot(lasso_mod) # Draw plot of coefficients

#min value of lambda

lambda_min = cv.out$lambda.min

#best value of lambda

lambda_1se = cv.out$lambda.1se

#regression coefficients

coef(cv.out,s=lambda_1se)

#get final model

fit_lasso=glmnet(x_train.lasso, y_train.lasso,family="binomial",

 standardize = FALSE,lambda = lambda_min)

#predict class, type=â€•classâ€•

lasso_prob = predict(cv.out,newx = x_test.lasso,s=lambda_1se,type="response")

#translate probabilities to predictions

lasso_predict <- rep("0",nrow(ad.test))

lasso_predict[lasso_prob>.5] = "1"

#confusion matrix

table(pred=lasso_predict,true=ad.test$income)

#accuracy

mean(lasso_predict==ad.test$income)

ROC curve

roccurve = roc(response = as.double(ad.test$income),predictor=lasso_prob,auc=TRUE,plot=TRUE)

cat("the auc is:",roccurve$auc,"\n")

source("http://www.rob-mcculloch.org/2019_ml/webpage/notes/lift-loss.R")

lift.plot(lasso_prob,ad.test$income)

#---

library(randomForest) # basic implementation

library(ranger) # a faster implementation of randomForest

library(caret) # an aggregator package for performing many machine learning models

library(h2o)

library(e1071)

library(doParallel)

library(parallel)

library(doSNOW)

library(snow)

#-----------------********** grid search for random forest **********------------------#

levels(ad.train$y) = c("low", "high")

Define the control

trControl <- trainControl(method = "cv",

 number = 10,

 savePredictions = 'final',

 classProbs = T,

 summaryFunction=twoClassSummary,

 search = "grid")

set.seed(123)

Run the model

rf_default <- train(y~.,

 data = ad.train,

 method = "rf",

 metric = "ROC",

 trControl = trControl)

Print the results

print(rf_default)

#The algorithm uses 500 trees and tested three different values of mtry: 2, 6, 11.

#The final value used for the model was mtry = 6 with an ROC of 0.9139765. Let's try to get a higher score.

Step (1) Search best mtry

test the model with values of mtry from 1 to 10

set.seed(123)

tuneGrid <- expand.grid(.mtry = c(1: 10))

rf_mtry <- train(y~.,

 data = ad.train,

 method = "rf",

 metric = "ROC",

 tuneGrid = tuneGrid,

 trControl = trControl,

 importance = TRUE,

 nodesize = 14,

 ntree = 300)

print(rf_mtry)

#The final value used for the model was mtry = 6.

best_mtry = rf_mtry$bestTune$mtry # store best mtry

print(best_mtry) # =6

#Step (2) Search the best maxnodes

store_maxnode = list()

tuneGrid = expand.grid(.mtry = best_mtry)

#store_maxnode <- list(): The results of the model will be stored in this list

#expand.grid(.mtry=best_mtry): Use the best value of mtry

#for (maxnodes in c(15:25)) { ... }: Compute the model with values of maxnodes starting from 15 to 25.

for (maxnodes in c(5: 15)) {

 set.seed(123)

 rf_maxnode = train(y~.,

 data = ad.train,

 method = "rf",

 metric = "ROC",

 tuneGrid = tuneGrid,

 trControl = trControl,

 importance = TRUE,

 nodesize = 14,

 maxnodes = maxnodes,

 ntree = 300)

 current_iteration = toString(maxnodes)

 store_maxnode[[current_iteration]] = rf_maxnode

}

results_mtry = resamples(store_maxnode)

summary(results_mtry)

from output out highest ROC when maxnodes=7, so we don't need to expand the range of maxnodes

#Step 4) Search the best ntrees

store_maxtrees = list()

for (ntree in c(250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000)) {

 set.seed(1234)

 rf_maxtrees = train(y~.,

 data = ad.train,

 method = "rf",

 metric = "ROC",

 tuneGrid = tuneGrid,

 trControl = trControl,

 importance = TRUE,

 nodesize = 14,

 maxnodes = 7,

 ntree = ntree)

 key <- toString(ntree)

 store_maxtrees[[key]] <- rf_maxtrees

}

results_tree = resamples(store_maxtrees)

summary(results_tree)

ntree=800 comes with largest ROC

#Finally, we got the best model with maxnodes=7, ntree=800, mtry=4

Final model

fit_rf = train(y~.,

 ad.train,

 method = "rf",

 metric = "ROC",

 tuneGrid = tuneGrid,

 trControl = trControl,

 importance = TRUE,

 nodesize = 14,

 ntree = 800,

 maxnodes = 7)

print(fit_rf)

cat("the auc is:",fit_rf$results[,2],"\n")

#Step 5) Evaluate the final model

(a) Plot ROC

levels(ad.test$income) = c("low", "high")

pred_rf_class= predict(fit_rf, ad.test)

pred_rf = predict(fit_rf, newdata = ad.test, type = "prob")

RF = prediction(pred_rf[,1], ad.test$income)

RF = performance(RF, "tpr", "fpr")

plot(RF, main = "ROC curves for randomForest")

library(randomForest)

#(b) plot variable importance

varimp_rf = varImp(fit_rf)

plot(varimp_rf, main="Variable Importance with rf")

print(varimp_rf)

(c) Compute the confusion matrix,

and get Accuracy for out best model, we have overall accuarcy of 83.08%

library(ROCR)

prediction =predict(fit_rf, ad.test)

confusionMatrix(prediction, ad.test$income)

#------------------------ Stochastic Gradient Boosting --#

for reproducibility

library(gbm) # basic implementation

library(xgboost) # a faster implementation of gbm

library(caret) # an aggregator package for performing many machine learning models

library(h2o) # a java-based platform

library(pdp) # model visualization

library(ggplot2) # model visualization

library(lime) # model visualization

train GBM model

set.seed(1234)

library(gbm)

fitControl <- trainControl(## 10-fold CV

 method = "repeatedcv",savePredictions = 'final',

 classProbs = T,

 summaryFunction=twoClassSummary,

 search = "grid",

 number = 10,

 ## repeated ten times

 repeats = 10)

this time, I don't want to pick one by one, Let's do a hyperparameter optimization(grid search)

gbmGrid = expand.grid(interaction.depth = c(1, 5, 9),

 n.trees = (1:30)*50,

 shrinkage = c(0.1,0.01),

 n.minobsinnode = 20)

set.seed(1234)

gbmFit2 = train(y ~ ., data = ad.train,

 method = "gbm", metric='ROC',

 trControl = fitControl,

 verbose = FALSE,

 tuneGrid = gbmGrid)

After waiting for over one hour, we got the final model with n.tree=1500,

depth=9, shrinkage=0.01.

Final model

set.seed(1234)

boost_fit = train(y ~ ., data = ad.train,

 method = "gbm", metric='ROC',

 trControl = fitControl,

 verbose = FALSE,

 tuneGrid = data.frame(interaction.depth = 9,

 n.trees = 1500,

 shrinkage = .01,

 n.minobsinnode = 20))

print(boost_fit)

cat("the auc is:",boost_fit$results[,5],"\n")

#Step 5) Evaluate the final model

(a) Plot ROC

pred_boost_class= predict(boost_fit, ad.test)

pred_boost = predict(boost_fit, newdata = ad.test, type = "prob")

GB = prediction(pred_boost[,1], ad.test$income)

GB = performance(GB, "tpr", "fpr")

plot(GB, main = "ROC curves for Boosting")

library(randomForest)

#(b) plot variable importance

varimp_boost = varImp(boost_fit)

plot(varimp_boost, main="Variable Importance with boosting")

print(varimp_boost)

(c) Compute the confusion matrix,

and get Accuracy for our best model, we have overall accuarcy of 83.08%

prediction =predict(boost_fit, ad.test)

confusionMatrix(prediction, ad.test$income)

#----------------------Support Vector Machines(with grid search) -----------------------------

library(e1071)

svm requires tuning

svm.tune <- tune(svm, y~., data = ad.train,

 ranges = list(gamma = 2^(-8:1), cost = 2^(0:4)),

 tunecontrol = tune.control(sampling = "fix"))

svm.tune

best papramater is cost=1,gamma=0.03125

Here comes our final model

svm_fit = svm(y~., data = ad.train, cost=1, gamma=0.03125, probability = TRUE)

Prediction

svm.pred = predict(svm_fit, type="prob", newdata=ad.test, probability = TRUE)

confusionMatrix(svm.pred, ad.test$income)

require(ROCR)

svm.prob.rocr = prediction(attr(svm.pred, "probabilities")[,1], ad.test$income)

svm.perf = performance(svm.prob.rocr, "tpr","fpr")

plot(svm.perf,main = "SVM ROC curve", colorize = T)

abline(a = 0, b = 1)

auc_ROCR = performance(svm.prob.rocr, measure = "auc")

auc_ROCR = auc_ROCR@y.values[[1]]

cat("the auc is:",auc_ROCR,"\n")

	Blank Page

