
APM 577 - Theory of PDE II (Spring 2018)

- Instructor: Sebastien Motsch (email: smotsch@asu.edu)
- Class: T,Th 10:30-11:45 (WXLRA 302)
- Class webpage: www.seb-motsch.com/graduate

Textbook: L. Evans, "Partial Differential Equations" (2nd edition)

Course Description

This course introduces rigorous methods to study partial differential equations such as existence theory and global behavior of solutions. The goal is to understand *intuitively* PDEs and then to develop analytic skills to *prove* results. This class is intended to be spread over two semesters, the first semester will be focused on **linear PDEs** (e.g. elliptic, parabolic equations) and the second semester on **non-linear PDEs** (e.g. conservation laws, reaction diffusion).

The course is divided into three parts:

- **a)** Introduction (*chap. 3*): we will review some examples of first order nonlinear PDEs (conservation laws, Hamilton Jacobi) and study *formally* their behaviors.
- **b)** Nonvariational methods (*chap. 9.1-9.3*): fixed point methods to solve nonlinear elliptic equations (e.g. $-\nabla \cdot (a(\nabla u)) = f$) and reaction-diffusion (i.e. $\partial_t u = \Delta u + f(u)$).
- c) Systems of conservation laws (*chap.* 11): Traveling waves solution to systems $\partial_t \mathbf{u} + \partial_x f(\mathbf{u}) = 0$, entropy conditions.