MAT 275 Course Objectives

$\underline{\text { Students will be able to: }}$

- Sketch (BY HAND) a direction field for a first-order ODE, and sketch integral curves.
- Find equilibrium (constant) solutions of ODEs of the form $y^{\prime}=f(y)$ and classify them as stable, unstable or semi-stable.
- Read the long-term behavior of the solutions of an autonomous first-order differential equation for different initial conditions given its direction field.
- Verify by substitution that a given function is a solution of a given ODE.
- Use initial conditions to find the values of the constants in a given general solution to an ODE.
- Classify differential equations by their order and linearity.
- Derive differential equations that model simple applied problems.
- Solve applied problems such as mixture problems and problems involving Newton's Law of Cooling.
- Use the method of integrating factors to solve linear, first-order ODEs.
- Solve first-order separable ODEs and initial value problems (IVPs). Whenever possible, write the solution in explicit form and determine the largest interval in which the solution is defined.
- Understand and apply the theorems on existence and uniqueness of solutions to initial value problems for first-order ODEs.
- Use Euler's method to derive approximations of solutions to initial value problems for firstorder ODEs.
- Determine whether two functions of one variable are linearly independent or dependent on a given interval by determining whether one of them is a constant multiple of the other or not.
- Classify second-order linear differential equation in standard form including distinguishing between homogeneous and nonhomogeneous equations.
- Apply the superposition principal for linear, homogeneous ODEs.
- Find the Wronskian of a set of functions as well as fundamental sets of solutions for linear, homogeneous ODEs with constant coefficients.
- Find general solutions to linear, homogeneous ODEs with constant coefficients using the roots of the characteristic polynomial.
- Solve nonhomogeneous, linear ODEs using the method of undetermined coefficients. (A method that works only when the function $g(t)$ is a polynomial, an exponential function, a sine or cosine and and/or a sum/product of these functions.)
- Apply ODEs to model mechanical and electrical oscillations.
- Transform a linear ODE of any order n into a system of n first-order ODEs.
- Write a system of first-order linear ODEs in matrix form.
- Solve simple 2-dimensional linear systems of ODEs by rewriting them as a single higher-order ODEs.
- Determine the phase portraits of simple 2-dimensional systems
- Know the definition of the Laplace Transform.
- Calculate the Laplace Transform of basic functions using the definition.
- Find the Laplace transform of derivatives and antiderivatives of functions.
- Compute inverse Laplace Transforms.
- Apply Laplace Transforms to find solutions of initial value problems for linear ODEs.
- Write piecewise functions in terms of unit step functions and find their Laplace Transforms.
- Solve certain ODEs where the forcing term is given by a piecewise continuous function.
- Learn the definition of the Dirac delta generalized function, understand it as an impulse, and solve ODEs with forcing terms involving impulses.
- Understand the definition and concept of linearly independent and linearly dependent vectors.
- Find the determinant, eigenvalues and eigenvectors of a given matrix.
- Write a linear system of ODEs in the form $x^{\prime}=P(t) x+f(t)$ with defining explicitly the coefficient the coefficient matrix $P(t)$ and the vectors x of unknowns and $f(t)$ of forcing terms.
- Verify by substitution that a given vector function is a solution to a given system of linear ODEs.
-Find the Wronskian of 2 given vector functions $x_{1}(t), x_{2}(t)$. Understand and explain what it means for it to be nonzero.
- Use the eigenvalue/eigenvector method to solve systems linear, homogeneous ODEs with constant coefficients $x^{\prime}=A x$ where the $n \times n$ coefficient matrix A is real-valued and nondefective ($n \leq 3$).

