STP226 Review problems Test2 (ch7-8-9)

Question #1

In response to increasing weight of airline passengers, the FDA tells airlines to assume that average weight of passengers in the summer (including clothing and carry-on baggage) is 190 pounds with standard deviation of 35 pounds. Weights of passengers are not normally distributed. A commuter plane with maximum passenger weight capacity of 6200 pounds carries 31 passengers. **Use Central Limit Theorem** to compute approximate probability that their total weight will exceed 6200 pounds, which means that their average weight \overline{X} will be over 200 pounds. Give 4 decimal places for your answer.

 $P(\bar{X}>200) =$ ______

Use following information in questions #2-#3

Diet colas use artificial sweeteners to avoid sugar, but thesesweeteners lose their sweetness over time. Trained testers scored the new cola on a "sweetness score" from 1 to 10 before and after 4 months of storage. Higher score indicates more sweetness. The difference X between the scores (before storage-after storage) was recorded for randomly selected 12 testers. The average change in sweetness was

 \overline{X} =1.02 with sample standard deviation s=0.92. Assume that X = change in sweetness is normally distributed with mean μ .

Question#2

Obtain 90% confidence interval for $\ \mu$, clearly show work by hand.

Question#3

The producers of cola claim that their cola on average does not lose sweetness, which means that μ =0. Is your interval from question 2 supporting that claim or not? Explain your answer.

Select one:	Claim is supported	Claim is not supported
Select one:	Claim is supported	Claim is not supporte

Explanation:

Question#4

Tempe school district administered a standard IQ test to all seven-grade students. Random sample of 30 seven-grade girls in that district had a mean IQ score of 112 points with sample SD of 19 points.

Do we have evidence at 5% significance level that mean IQ score of seven -grade girls in that school district exceeds 100 points? Test appropriate hypotheses. Use following parts, clearly show all work.

a) Formulate null and alternative hypotheses:

 H_0 :

b) Compute the appropriate test statistics.

c)Give the rejection region for your test, include appropriate sketch, marking critical value(s), and clearly label rejection and non-rejection areas.

d)Decide if null hypothesis is rejected or not, explain your decision

Reject H_0 **Do not reject** H_0 (circle one)

Explanation:

e) Clearly answer question posed in the problem. Use complete sentences.

 H_a :

The level of nitrogen oxides (NOx) in the exhaust of cars of a particular model varies Normally with mean $\mu = 0.25$ grams per mile (g/mi) and standard deviation $\sigma = 0.08$ g/mi. Government regulations call for NOx emissions no higher than 0.3 g/mi. A company has 4 cars of this model in its fleet. What is the probability that the average NOx level, \overline{X} , of these cars will be below 0.3 g/mi limit? Give 4 decimal places for your answer.

 $P(\bar{X} < 0.3) =$ _____

Question #6

The heights of a certain population of corn plants follow distribution that is not normal, with mean 145 cm and standard deviation of 22 cm. Let \bar{X} represent the mean height of a random sample of 36 plants from the population. Use Central Limit Theorem to compute the probability that \bar{X} will estimate population mean with an error of no more than 10 cm.

 $P(135 < \bar{X} < 155) =$

Question #7

The 95.44% confidence interval for a mean price of all hard cover books in a large book store is (\$23.8, \$30.2). Z-interval procedure was used to compute this interval.

a) What was the sample mean?

b) What is the margin of error?

c) Suppose population standard deviation was \$8, what was the sample size?

Question #8

A random sample of size 15 of delinquent charge accounts of certain large department store has mean of \$58.14. Assume that the population of of all delinquent charge accounts in that store is nearly normally distributed with no outliers and population standard deviation is \$15.30.

- a. Determine 80% confidence interval for the actual average size of all delinquent charge accounts at this store (use z-interval procedure)
- b. Give interpretation of your interval.
 - (I) We have confidence that 80% of all delinquent charge accounts in that store are within the above CI.
 - (II) We have confidence that 80% of 15 sampled delinquent charge accounts are within the above CI.
 - (III) We have 80% confidence that mean of the 15 sampled delinquent charge accounts is within the above CI.
 - (IV) We have 80% confidence that mean of all delinquent charge accounts in that store is within the above CI

You want to estimate the mean weight of all students in a large university. What should be the size of your sample, so that the 90 % confidence interval for the true population mean weight (μ) will have a margin of error of no more than 5 lb? Assume that the population standard deviation (σ) is 20 lb. Assume also normal distribution of all weights of the students at that university.

Question #10

Suppose we consider a population of people whose weight is normally distributed with mean $\mu = 150$ pounds and standard deviation $\sigma = 15$ pounds.

Let \bar{X} denote the mean of the sample of size 9 from that population.

a)What type of distribution is the sampling distribution of \bar{X} for samples of size 9? Give the mean and the standard deviation of that distribution, use proper symbols.

Sampling distribution of \bar{X} is ______

Mean ($\mu_{\bar{x}}$) = _____ St. Deviation ($\sigma_{\bar{x}}$)=_____

b) What percentage of samples of size 9 will have mean (\bar{X}) less than 142.5 pounds?

c)What is the probability that, for a sample of size 9, \bar{X} will exceed 160 pounds?

d)Compute the probability that , for a sample of size 9, \bar{X} will estimate population

mean μ with an error of no more than 3 lb?

e) If our population did not have a normal distribution, but highly left skewed distribution, we would not be able to answer questions 1-4. Explain briefly why not?

Question #11

Test scores of all students in Mat 142 classes have a normal distribution. The following is a random sample of 9 test scores from that population:

63, 71, 80, 66, 85,92, 56, 32, 77

a. Determine 95% confidence interval for $\ \mu$, the true mean test score of all Mat142 students (use t-interval procedure)

c. Without computations determine if 99% CI based on your data will be narrower, wider, or the same width as your CI in part a.

Narrower Wider The same width	(circle one)
-------------------------------	--------------

d. Suppose you computed 90% CI for μ using a new sample of size 16. If the margin of of error in your CI was 12 points, what was a sample SD?

The heights of young women in AZ are normally distributed with mean μ and standard deviation σ =2.4 inches. A random sample of 44 AZ women had a sample mean of 68.5 inches. Do we have evidence that μ is greater than 67 inches? Test appropriate hypothesis, make your conclusions based on the **p-value method.** Use $\alpha = .01$?

Define µ :			
Formulate both hypotheses (use	proper symbolic notation)		
H ₀ :	Ha:		
Compute appropriate Test Statist	ics:		
Give p-value (include appropriate sketch)	p-value=	Sketch:	
Decision: H ₀ rejected	H_{0} not rejected		(select one)
Answer question posed in the pro	oblem using a full sentence:		
Ouestion #13			

The owner of a construction company would like to know if his current work crew takes on average less time to build a deck on a house than his past crews. He knows that the average time it took his past crews to build a deck is 28 hours. A random sample of 9 decks that the current crew has built resulted in a **sample mean** of building time of 24 hours and a **sample standard deviation** of 6 hours. Conduct the appropriate hypotheses test using the $\alpha = 0.05$ and **Rejection Region method.** Assume that times it takes his current crew to build the decks are normally distributed.

Define μ :			
Formulate both h	nypotheses (use proper sym	bolic notation)	
H ₀ :		H _a :	
Give rejection re (draw a sketch ar	gion : nd give critical value(s)		
Compute appropriate Test Statistics:			
Decision: H	I₀ rejected	H ₀ not rejected	(select one)
Answer question	posed in the problem using	g a full sentence:	

Suppose you following que	test null hypothesis estions:	$H_0:\mu=16$	versus	alternative	$H_a:\mu > 1$	16 . Answ	er the
	e test statistics was 05? Include a sketcl		mpute th	e p-value ar	nd decid	e if H_0 be r	ejected or
Sketch:			p-	value=			
Reject H_0	Do not reject	H_0	Explain	why:			-
	0.05, find the rejec $\alpha = 0.05$, given tha						ernative
SKETCH of T	he REJECTION REG	SION:					
Yes, we have	evidence for H_a		No, we ha	ave no evide	nce for	H_{a}	
Explain why:_							
c)Suppose p_ why.	_value for the test w	as .034, wou	ıld you rej	ect H_0 at 5%	% signific	cance level	? Explain
YES	NO		Reason:				
	at the p-value for th native hypothesis to			s .034 , what	will be t	the p-value	if we
P-Value:							
	e rejected null hypo sion to reject correc					lation mea	n was 16.
CORRECT	TYPE I ER	ROR	ТҮ	PE II ERROI	R (sel	ect one)	
	5% CI for μ was (14 be rejected in favor			ıt interval, w	ould nul	l hypothes	is
YES	NO	Reason:			_		
	5% CI for μ was (12.) based on that CI?	6, 15.1), wou	ıld you rej	ect null hype	othesis	$H_0:\mu=16$	in favor of

YES NO Reason:_____

Multiple choice questions. Select one from A to E as appropriate.

Use following for Questions #15 - #19

Student Study Times.

A survey asked the following question: "About how much time (in minutes) do you study on a typical weeknight?" of randomly selected 46 first-year ASU students. The **sample mean was 118 minutes**. Let μ be the mean study time of all first-year ASU students, assume that population standard deviation $\sigma = 65$ minutes.

Question #15

Compute a margin of error in a 90% confidence interval for μ . Give 2 decimal places for the final answer.

A) 19.17 B) 18.78 C) 15.77 D)19.30 E) none of these

Question #16

What sample size is needed for a margin of error in 95.44% confidence interval for μ to be no more than 5 minutes.

A) $n \ge 650$ B) $n \ge 458$ C) $n \ge 676$ D) $n \ge 277$ E) none of these

Question #17

Suppose you want to test if μ is less than 2 hours (120 minutes). Formulate null and alternative hypotheses to be tested:

A) $H_0: \mu \ge 118$ B) $H_0: \mu < 120$ C) $H_0: \mu = 118$ D) $H_0: \mu = 120$ $H_a: \mu = 120$ $H_a: \mu = 118$ $H_a: \mu < 118$ $H_a: \mu < 120$

E) none of these

Question#18:

Suppose the p-value for your test you conducted in previous question (#8) was 0.42, what is the conclusion for your test at 5% significance level? Select one of the answers below:

(A) Reject H_0 , we have no evidence for H_a at $\alpha = 0.05$ (B) Do not reject H_0 , we have no evidence for H_a at $\alpha = 0.05$ (C) Reject H_0 , we have evidence for H_a at $\alpha = 0.05$ (D) Do not reject H_0 , we have evidence for H_a at $\alpha = 0.05$

Question#19

Suppose you want to test the following hypotheses: $H_0: \mu = 110$ versus $H_a: \mu \neq 110$ at 5% significance level. Select critical value(s) for the rejection region for your test:

(A) ± 1.645 (B) ± 2.014 (C) ± 1.28 (D) ± 1.96 (E) none of these

Use following information in Questions #20 - #22:

Cholesterol Levels of young males.

Suppose a researcher wants to test if a mean cholesterol level (μ) of young males who experienced a mild heart attack is higher than that of healthy young males, which is known to be 188mg/dl. His hypotheses are: H₀: μ = 188 versus H_a: μ > 188

Question#20

Suppose he knows the population standard deviation and is using a **z-test**, and the test statistics he received is z = 2.37. Compute the **p- value** for his test. **Give 4 decimal places.**

A)0.0089 B) 0.9911 C)0.0178 D) 1.9822 (E) none of these

Question#21

Suppose he does not know the population standard deviation and is using a **t-test**, his sample size n= 15 and and the test statistics he received is t = 1.90. Estimate the **p- value** for his test from the t-table:

A) 0.025<*p*-*value*<0.05 B) 0.05<*p*-*value*<0.025 C) 0.05<*p*-*value*<0.10

D) 0.01 (E) none of these

Question#22

Suppose null hypothesis was rejected at 5% significance level, only one of the following is the correct conclusion for our hypotheses test, **circle the correct answer.**

A) We have no evidence at 5% significance level that mean cholesterol level for young males that experienced a mild heart attack is higher than mean cholesterol level for healthy young males

B) We have evidence at 5% significance level that mean cholesterol level for young males that experienced a mild heart attack is higher than mean cholesterol level for healthy young males.

C) We have evidence at 5% significance level that mean cholesterol level for young males that experienced a mild heart attack is lower than mean cholesterol level for healthy young males

D) We have evidence at 5% significance level that mean cholesterol level for young males that experienced a mild heart attack is the same as mean cholesterol level for healthy young males

Question#23

Suppose the mean annual income for adult women in one city is \$28,520 with standard deviation of \$5190 and the distribution is left skewed. What is the sampling distribution of the sample mean \bar{x} for samples of size 49

A) approximately normal distribut	ion	B) t distribution with 48 degrees of freedom
C) standard normal distribution	D) ca	an't specify, because sample is not large enough

TRUE- FALSE questions. Decide if each of the following statements is True or False.

Statement#1 Suppose 90% confidence interval for a mean age of participants in a large mathematical conference , based on a random sample of 120 participants, is (35, 49). We can say that 90% of all participants in that mathematical conference are between 35 and 49 years old.

True False

Statement#2 Suppose the mean annual income for adult women in one city is \$28,520 with standard deviation of \$5190 and the distribution is extremely right skewed. For the samples of size 19, sample mean has approximately normal distribution.

True False

Statement#3 If we compute 95% and 90% confidence intervals for the mean final exam score of all Mat 117 students at ASU last semester, then 95% confidence interval will be wider than 90% confidence interval.

True False

Statement#4 In testing hypothesis null hypothesis will be rejected if p-value for the test is greater than selected significance level α .

True False

Statement#5 If we test $H_0: \mu = 18$ versus $H_a: \mu \neq 18$ and H_0 is rejected, but later a mega study concluded that $\mu = 22$, then by rejecting H_0 we committed Type I error. **True False**

Statement#6 If test statistics falls outside of the rejection region, we reject null hypothesis.

True False

Statement#7 Suppose we conducted a z-test of the following hypotheses: $H_0: \mu = 8$ versus $H_a: \mu \neq 8$ and we rejected null hypothesis at 5% significance level. In that case 95% confidence interval for μ computed from the same data would contain 8.

True False

Statement#8 If p-value for the right tailed t-test test is 0.032, then p-value for the two tailed t test is 0.064.

True False

Key.

Question #1

 \bar{x} has approximately Normal distr. with mean 190 lb and SD of 6.286 lb, so $P(\bar{x}>200)=P(z>1.59)=0.0559$

Question #2

T interval, df=11 $t_{0.05}$ =1.796 E=1.796 $(\frac{0.92}{\sqrt{12}})$ =0.48 1.02±0.48 gives (0.54, 1.50)

Question #3

Claim is not supported, CI is above 0 and we have 90% confidence that μ is inside that interval.

Question #4

a) H_0 : $\mu = 100$ H_a : $\mu > 100$ b) t=3.46

c)df=29, cv=1.699, sketch must show t-curve, are right of cv is a rejection region (inclusive) d)**Reject** H_0

Explanation: 3.46 falls into the rejection region

e) At 5% significance level data presents evidence that mean IQ score for seven-grade girls in that school district exceeds 100 points.

Question #5

 \bar{x} has Normal distr. with mean 0.25 g/mi and SD of 0.04 g/mi, so $P(\bar{X} < 0.3) = P(z < 1.25) = 0.8944$

Question #6

 \bar{x} has approximately Normal distr. with mean 145 and SD of 3.67 cm, so $P(135 < \bar{X} < 155) = P(-2.72 < z < 2.72) = 0.9935$

Question #7

a) $\bar{x} = (30.2 + 23.8)/2 = 27$ b) E=(30.2-23.7)/2=3.2 c) E=3.2=2 $\frac{8}{\sqrt{n}}$ from this n=(16/3.2)²=25

Question #8

a) z-interval
$$E = 1.28 \left(\frac{15.3}{\sqrt{15}}\right) = 5.06$$
 58.14±5.06 gives (53.08, 63.2)
b) IV

Question #9

 $n = \left(\frac{1.645(20)}{5}\right)^2 = 43.3$, so $n \ge 44$

Question #10

a) Sampling distribution of \bar{X} is normal Mean (μ_x) = 150 St. Deviation (σ_x)=15/3=5

b)
$$z = \frac{(142.5 - 150)}{5} = -1.5$$
 6.68%

c) $P(\bar{x} > 160) = P(z > 2) = 0.0228$

d) $P(147 \le \overline{x} \le 153) = P(-0.6 \le z \le 0.6) = .4515$

e) No, we would need a large sample, at least 30.

Question #11

- a) $\bar{x} = 69.11$ and s=17.88 CI: (55.4, 82.9)
- b) No, CI is below 86
- c) Wider, t-value will be larger

d) df=15, $t_{0.05} = 1.753$ $s = \frac{12\sqrt{16}}{1.753} = 27.4$

Question #12

 μ = mean height of young women in AZ

 H_0 : μ =67 H_a μ >67

z=4.15 p-value=0 (from tables) sketch : area right of 4.15 under N(0,1)

 H_0 rejected

There is evidence at 1% sign. level that mean height of young women in AZ is greater than 67 inches

Question #13

 $\mu~$ = mean time to build the deck for the new crew.

 H_0 : μ =28 H_a μ <28

t=-2 cv=- 1.86, sketch :Rejection region left of cv under t curve with df=8

 H_0 rejected

There is evidence at 5% sign. level that mean time the new crew takes to build the deck is lower than 28 hours.

Question #14

a. pv=.1056 (area right of 1.25) , H_0 not rejected, since pv>.05

b. Rejection region=area right of 1.645, H_0 rejected, so we have evidence for H_a

- c. 0.034<0.05, yes
- d. pv=2(0.034)=0.068
- e. Type I error
- f. no, 16 inside CI
- g. yes, 16 outside CI

Questions 15-23 C C D B D A A B A

Questions (Statements) 1-8 FFTFTFTFT